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SILENCER! A TOOL FOR SUBSTRATE NOISE COUPLING ANALYSIS 

1. INTRODUCTION 

1.1 Motivation 

Over the past several years, technological advances have enabled engineers 

to produce smaller, yet more complex electronic equipment. Engineers are 

continually trying to fit more functionality on a chip, increase the speed, and 

accommodate more features in a smaller space. Consequently, there has been a 

considerable emphasis on deep submicron (DSM) System-on-a-Chip (SoC) 

solutions. An example of such a System-on-a-Chip is a wallet-sized cell phone that 

now offers capabilities which were unimaginable even a few years ago. Due to 

decreasing feature sizes, increasing clock frequencies, lower supply voltages, and 

larger interconnect parasitics, the digital portions of a mixed-signal chip become 

much noisier and often interfere with sensitive analog and RF circuitry. Therefore, 

it is a challenging task to design high-speed mixed-signal and RF ICs and substrate 

noise coupling becomes a key issue that must be considered for SoC applications 

[1], [2], [3], [17]. 

Due to the complexity of the problem, it is very difficult to accurately 

estimate substrate noise coupling in a mixed-signal design. Therefore, until 

recently, IC designers were forced to use rule-of-thumb guidelines when trying to 

minimize substrate noise coupling. However, these rule-of-thumb guidelines often 

led to either under- or over-engineered designs.  

Being able to use a tool to solve substrate noise coupling issues leads not 

only to better designs, but it also reduces the time-to-market. Therefore, over the 
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past few years, several substrate noise coupling analysis tools have been developed 

[8], [9], [10], [11]. However, some disadvantages of these tools (a summary of 

these tools is given in Section �2.3) are the time and computational recourses 

required to extract a substrate network. Another common problem is the large 

netlists that lead to long simulation times, before a result can be obtained. In 

addition, a tool may be difficult to set up and to use, or a tool may not look at 

substrate noise coupling as a holistic problem that is it may not be seamlessly 

integrated into a mixed-signal design flow. Furthermore, most tools focus on the 

final post-layout verification. For example, they back annotate the substrate 

network, which was extracted from the process information, to the completed and 

extracted layout. However, once a layout is completed, it is usually too late and too 

expensive to make any major changes. In other words, even though the post-layout 

verification is an important part of a substrate noise coupling analysis tool and 

needs to be addressed, a holistic tool should also be usable in early stages of design, 

e.g., for floor-planning, or when only parts of the layout are developed. 

It is very likely that the noise predicted in the pre-layout stage is less 

accurate. However, if the tool at least predicts some trends about substrate noise 

cross-talk between noisy digital and sensitive analog/RF circuitry, it can be very 

useful to the designer. 

Silencer! tackles the disadvantages of existing substrate noise coupling 

analysis tools and builds a holistic approach and  a platform for pre-layout substrate 

noise coupling analysis, addressed from a circuit design perspective. It uses the 

information that is present in the layout at a certain stage of design, and extracts (or 

estimates) a substrate network from that information. Then, it back annotates the 

network into the schematic view. Therefore, the concept of Silencer! is a 

schematic-driven tool that allows analysis and optimization of substrate noise 

coupling at different stages of design. Thus, noise suppression strategies can be 

used, if necessary, before the entire layout is finished. For instance, by using 
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Silencer!, designers can determine which one of the design changes actually 

achieved the successful result before they go to the next design step. 

1.2 Substrate Noise 

Substrate noise in mixed-signal ICs is due to the coupling of digital 

switching noise into the substrate from the switching transistors and interconnects. 

Other causes for noise injection are contacts that connect the substrate and wells to 

the power supplies. Current variations in the power supply and ground lines 

combined with the line inductances and routing resistances result in noise injection 

into the substrate [1]. Once injected into the substrate, noise can propagate via the 

shared silicon substrate and affect the performance of sensitive analog, RF, and 

other digital circuits on the same chip. Figure �1.1 illustrates how generated 

substrate noise propagates through the silicon substrate, and is picked up by a 

sensitive analog or RF circuit. 
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Figure �1.1 Substrate noise generated by a digital inverter propagates through the 
shared substrate to a sensitive analog NMOS transistor. 

For example, a mixed-signal designer may be concerned about noise that 

couples from a digital signal processor (DSP) to a sensitive high gain amplifier. A 

RF designer, on the other hand, may worry about noise from the mixer coupling 

into the low noise amplifier (LNA). Moreover, the design of high-speed digital 

circuits with embedded sensitive circuitry, such as phase-locked loops (PLLs), 

presents another situation, where substrate noise can be a severe problem. PLLs are 

fundamental building blocks commonly used for data recovery in disk drives, in 

wireless communications to generate the local oscillator (LO), in high-speed micro-

processors (for clock generation), and in memories. Substrate noise coupling into a 

PLL increases the jitter of the PLL, and in many cases, it not only degrades the 

performance, but even causes malfunctioning of an entire chip. 
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1.3 Summary of Previous Work 

Previous research on substrate noise coupling simulation and analysis at 

Oregon State University (OSU) focused on substrate modeling, such as scalable 

macro-models [5], [6], boundary element models (EPIC) [7] and validation of these 

models with measurements from test structures, fabricated in various processes 

(TSMC 0.35�m heavily doped process, TSMC 0.25�m heavily and lightly doped 

process, SiGe 7HP lightly doped process, and SOI process through MIT). 

Moreover, research has been done in efficient and accurate probing of substrate 

noise using sensing options [16]. It has been determined, which sources of substrate 

noise are the dominant ones, and how different packages, interconnects, and other 

parasitic elements influence substrate noise coupling. 

In the past two years, more complex circuits were fabricated at OSU to 

validate the substrate models and to correctly connect substrate networks to more 

complex layout structures. Due to the complexity of these circuits, it is 

inconvenient and time consuming to compute and connect a substrate network 

manually, and therefore, a prototype substrate coupling tool in Perl script was 

developed to extract a substrate network from the geometric information of a 

Caltech Intermediate Format (CIF) file. However, this tool was not seamlessly 

integrated into a mixed-signal design flow. In addition, the CIF file format, which 

is not a standardized file format, is very large for more complicated circuits and, 

therefore, is not practical to use. 
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1.4 Contributions of This Work 

Silencer! combines the various aspects of a substrate noise coupling 

analysis methodology - based on research at Oregon State University over the past 

several years. It includes a self-guiding user interface that is fully integrated into 

the CADENCE DFII environment. 

As already mentioned in Section �1.1, many of today’s available substrate 

coupling tools [8], [9], [11] are not seamlessly integrated into a standard mixed-

signal design flow, and consequently, do not look at the substrate noise coupling 

problem as a whole methodology. A substrate noise coupling tool may use the 

process parameters and a substrate model to extract and connect a substrate 

impedance network between some circuit nodes. However, from a circuit design 

point of view, there are more factors that have to be taken into account to be able to 

obtain accurate results. For example, if designers forgets to include the package 

models or the parasitic elements of badly designed ground traces to switching 

circuits, just because the tool does not provide such information, the simulation 

may be very inaccurate. This can result in an underestimation of substrate noise in a 

design and make a tool unreliable. 

Other common problems with some substrate noise coupling tools are 

setting them up correctly for different processes or using them to optimize a layout 

during early stages of design. A setup often requires complicated modifications of 

the extraction rules files, before a substrate network can be extracted and correctly 

back annotated to the netlist. Furthermore, most tools are designed for a final 

verification of substrate noise coupling, using the fully extracted layout. However, 

at that stage, it is often too late, too expensive, and too time consuming to make 

major changes in the layout or the design. 
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Silencer! addresses the above mentioned problems and allows substrate 

noise coupling analysis, simulation, and optimization during the entire design and 

layout process. Depending on the stage of design and sizes of the circuit, fast 

scalable macro-models or a slower, but more accurate boundary element model 

(EPIC) can be used to calculate a substrate network. Scalable macro-models can 

tremendously increase the speed of substrate network extraction without much loss 

of accuracy. The integrated extractor EPIC, on the other hand, is meant to be used 

for smaller circuits or for validation. Switching between any of the different models 

is very simple (one mouse click) within the Silencer! framework. 

1.5 Thesis Organization 

The thesis is organized as follows: Chapter �2 discusses the sources of 

substrate noise and provides an overview of available substrate noise coupling 

tools. Chapter �3 describes the operation and tool capabilities and presents several 

substrate coupling models that have been incorporated into the tool. Chapter �4 

presents a detailed example to illustrate the accuracy and efficiency of the tool. 

Using the example, it is shown how Silencer! can be used to perform substrate 

noise coupling analysis and optimization at different stages of the layout 

development. Chapter �5 compares substrate noise coupling measurements and 

Silencer! simulations between a noise injecting block and a noise sensitive block. 

Finally, Chapter �6 concludes the thesis and gives a perspective of future work. 
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2 SUBSTRATE NOISE COUPLING SIMULATION 

For substrate coupling analysis, process and layout geometry information are 

needed. Process specific information, such as available process-layers (wells, 

buried layers, and other structures), are commonly encapsulated in a process 

technology file. Once the substrate port locations are known for noise coupling 

analysis, a substrate impedance network can be extracted and back annotated into 

the transistor level netlist. A SPICE like transistor level simulator can thereafter be 

used to perform a transient analysis and simulate the effect of substrate noise cross-

talk between circuits. The output of the analysis may be the substrate noise at all 

the sensitive analog circuit locations in a chip. Designers can now determine the 

impact of substrate noise on circuit behavior and apply appropriate noise mitigation 

techniques. 

The above approach to perform substrate noise coupling simulation and 

analysis has to be incorporated in a standard mixed-signal design flow. One general 

high-level design flow is illustrated in Figure �2.1. 
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Figure �2.1 High-level design flow that incorporates substrate noise coupling 
simulation and analysis from circuit schematic level to tape out. 

Once a circuit schematic of the designed circuit blocks is created, an 

approximate substrate network between the circuits can be estimated. The resistor 

values for the estimated network will not only depend on the size and separation of 

each individual block, but also on their locations on the chip. Large digital blocks 

may be represented as equivalent current sources with a certain noise signature and 

RMS value. Sensitive components of an analog circuit, on the contrary (e.g., 

transistors that have terminals connected to a high impedance node), may be parts 

of an analog block. Substrate noise coupling simulation and analysis at this stage of 

design - called the pre-layout design stage - helps during floor-planning. If too 

much substrate noise coupling from the digital blocks to the sensitive analog blocks 

occurs, a re-design may have to be considered, or noise isolation techniques may 
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have to be applied. One possible way of re-designing may be to relocate the I/O 

buffers in a digital circuit. If floor-planning is successful, routing interconnects 

from the blocks to the bond-pads can be estimated or extracted and connected. 

Furthermore, different package models can be used to experiment with how the 

package parasitic elements influence substrate noise coupling. 

Once a more detailed layout of the circuits is available, the effect of 

substrate noise coupling can be simulated and analyzed more accurately. To include 

the parasitics, the layout and substrate network can be extracted and connected. If 

too much substrate noise coupling is observed at this stage, the layout of some 

blocks may have to be changed. Moreover, it may be necessary to even relocate an 

entire block, and redo the substrate coupling simulation and analysis. 

When the entire chip layout is completed and the effects of substrate noise 

coupling are tolerable, a final verification using the entire extracted layout 

information can be performed. If the results are satisfactory, the chip is ready for 

tape out. 

2.1 Sources of Substrate Noise 

There are three main sources of substrate noise: impact ionization, 

switching noise, and supply noise [18]. Impact ionization is a phenomenon caused 

by high electric fields between the depleted part of the drain-channel and the 

substrate. Due to the high electric fields, electrons achieve high velocities and 

collide with silicon atoms in the substrate. Such collisions can create electron-hole 

pairs in the substrate and cause a substrate current. If the BSIM3 model is used at 

the transistor level, then impact ionization is automatically modeled. 

Switching noise is caused by a large number of fluctuating digital nodes 

that are capacitively coupled to the substrate. When digital circuits switch, they 

inject current into the substrate via the source/drain junction capacitances. Owing to 
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the fact that the amount of injected current is directly proportional to the slew rate, 

dv/dt, of the switching voltage, substrate coupling increases with the speed of the 

circuit, i.e., i = C*dv/dt. Furthermore, the larger the transistors, the larger the 

junction capacitances, and thus, more noise can be coupled into the substrate. 

Figure �2.2 is a cross-Section of an NMOS transistor with its junction capacitances 

(left) and its symbol (right). It illustrates how switching noise is capacitively 

injected into the substrate. The junction capacitances are already included in the 

BSIM3 transistor models and not shown in the symbol. 

 

 

 

 

Figure �2.2 A cross-Section of an NMOS transistor (left) shows substrate noise 
coupling from the source and drain junction capacitances. The symbol (right) 
illustrates how the terminals of the NMOS transistor are represented.  

The current injected will propagate through the substrate and affect other 

transistors that lie in its path through the body effect. The threshold voltage (Vt) of 

an NMOS transistor is given by, 

 

 ( )0 2 2t t F SB FV V Vγ= + Φ + − Φ  (�2.1) 
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where VSB is the voltage between the source and the bulk terminals, Vt0 is the zero 

bias threshold voltage, �F is the Fermi level, and � is the body effect parameter. As 

can be seen from this equation, a change of the voltage VSB will also cause a 

change of the threshold voltage. Consequently, a fluctuation of the body potential 

due to a substrate current pulse will result in a change of VSB and, therefore, also a 

change in Vt. The drain current of an NMOS transistor in both the linear and 

saturation regions is given by the following equations: 
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Because the drain current depends on the threshold voltage Vt , fluctuations 

in the transistor body potential directly lead to noisy drain currents. 

The effect of non-ideal power supplies contributes significantly to the 

amount of substrate noise in an IC design. Package traces, bond-wires, and long 

interconnect routing associated with the substrate supplies have finite, and often 

large, inductances and resistances. Substrate current picked up by these supplies 

can cause glitches in the supply voltage. This phenomenon is also called inductive 

L*di/dt noise. Figure �2.3 shows a cross-Section of an NMOS transistor and its p+ 

substrate contact, also called p-tap (left) and its symbol (right). It illustrates how 

supply noise is injected directly into the substrate through the p+ contact. A 

transistor symbol does not include a terminal for the p-tap. In this thesis, if a p-tap 

terminal is necessary for illustration purposes, it will be represented as a circle 

between the bulk and source terminals.  
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Figure �2.3 A cross-Section of an NMOS transistor (left) shows how supply noise 

(or inductive L*di/dt noise) is coupled into the substrate through a p-tap. The p-tap 

routing to the ground is non-ideal due to metal traces and package parasitics. The 

symbol (right) illustrates how the terminals of the NMOS transistor including the p-

tap can be represented. 

2.2 Lightly and Heavily Doped Substrates 

Substrates are classified in two different types: lightly doped and heavily 

doped. Lightly doped substrates can be represented as two discrete layers with 

uniform doping concentrations and certain thicknesses. The bulk-layer of a lightly 

doped substrate has a high resistivity (e.g., 20-50 �-cm), consequently noise 

between substrate contacts propagates mostly on the surface. Separating circuits 

reduces crosstalk between noisy and sensitive circuitry. Therefore, the use of noise 

mitigation techniques, such as guard rings and trenches are very effective in 

reducing substrate noise coupling. However, the disadvantage of lightly doped 

substrates in mixed-signal ICs is latch-up problems. 

Heavily doped substrates have been developed to prevent latch-up 

problems. They can be represented as three discrete layers with uniform doping 



 

 

14 

concentrations and certain thicknesses. The bulk-layer of a heavily doped substrate 

has a low resistivity (e.g., 1 m�-cm). Between the surface- and the bulk-layer, 

there is a thin, high resistivity epi-layer (e.g., resistivity = 10-15 �-cm). Due to the 

low resistance bulk- and a thin epi-layer, there is a low impedance path from the 

surface down to the backplane. For larger separations between substrate contacts, 

the cross-coupling impedance between the contacts is much higher than the 

impedance to the backplane. Substrate noise can therefore travel vertically to the 

backplane, propagate laterally through the low resistance bulk, and back up to the 

surface. Consequently, most of the substrate coupling between the circuits takes 

place through the heavily doped bulk-layer for larger separations (e.g., 30�m - 

100�m). Beyond a certain separation, the amount of noise coupling becomes nearly 

independent of distance and consequently, placing the sensitive analog and noisy 

digital circuits farther apart from each other will not reduce the coupling further. 

Moreover, guard rings are not very effective in reducing the coupling, unless they 

are placed very close to the digital circuits. Noise can travel long distances and 

even affect circuits placed far away on the chip. However, grounding the backplane 

reduces noise significantly. Figure �2.4 shows the cross-Section of lightly and 

heavily doped substrates. 

 

 

Figure �2.4 Cross-Section of a lightly doped two-layer (left) and a heavily doped 
three-layer substrate (right). In the lightly doped substrate, noise between substrate 
contacts will propagate on the surface and decreases if circuits are separated farther 
apart from each other. In the heavily doped substrate, beyond a certain separation 
between the circuits, most of the noise will propagate through the low resistivity 
substrate and cannot be further decreased by separating the circuits further apart. 
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2.3 Substate Noise Coupling Analysis Tools 

This Section gives a brief overview of some of the commercially available 

substrate noise coupling simulation and analysis tools. The only tool we have 

evaluated is SCA. It is integrated in the CADENCE DFII framework version 4.4.6. 

SCA [8] works with the Virtuoso layout editing tool and uses Assura™ 

interactive verification products (DIVA) to extract shapes. The substrate coupling 

model it generates is a resistor and capacitor network specifically designed for use 

by SPECTRE and SPECTRERF simulators. SCA also includes a command line 

interface and uses a core Poisson’s equation based field solver together with a 

multilayer Green’s function solver and matrix compression to extract a substrate 

impedance network. Insignificant matrix elements are discarded to reduce the 

netlist. SCA can be customized by adding different substrate port structures into the 

DIVA rules files. However, that requires detailed knowledge about DIVA 

programming and makes it difficult to set up for different processes. Further, SCA 

is not well integrated into a mixed-signal design flow, compared to other tools. 

SubstrateStorm™ [9] is a suite of layout investigation tools developed by 

Simplex. It enables designers to take into account the substrate coupling effects of 

deep-submicron mixed-signal, analog, and RF designs. Furthermore, it helps 

engineers pinpoint crosstalk and parasitic coupling problems. SubstrateStorm 

supports complex structures, such as deep-well, triple-well, buried layers, and deep 

trenches for CMOS, BiCMOS, SiGe, and bipolar processes with lightly doped, 

epitaxial, or SOI bulks. It automatically generates a 3D mesh with vertical grid 

lines that fit the process doping profiles and a surface grid computed from the 

layout. An algorithm is used to reduce the model complexity from the original 3D 

mesh to a 2D information required to visualize the substrate noise distribution and 

to generate a SPICE-like netlist. If sufficient computation power is provided, the 

tool is capable of analyzing layouts with a resolution of up to one million surface 

nodes at the die level, which corresponds to approximately 50,000 devices. In 
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addition, it offers a 2D visualization of the noise distribution. SubstrateStorm™ is 

probably the most accurate tool on the market, but it is slow for a large number of 

substrate ports (a simulation can run for several days). As a result, it cannot be used 

to simulate very large circuits or entire chips. 

SeismIC™ [10] is a substrate noise analyzer for mixed-signal designs. It 

extracts switching currents injected into the substrate from transistor bulks, 

interconnects, and power or ground connections. A boundary element method is 

used to calculate an impedance model Z(s) from the various switching sources to 

the analog components. The substrate is modeled as a 3D medium that consists of 

stacked layers of uniform doping, each characterized by a resistivity, dielectric 

constant, and thickness. Wells, buried layers, trenches, junction capacitances 

between well and substrate, and junction capacitances between buried layers and 

substrate are also modeled. SeismIC is well integrated into a mixed-signal design 

flow and lets IC designers perform substrate noise analysis on a full chip. For 

example, if no package parasitics and pin inductances are provided, it automatically 

assumes default values. It also gives the designer a list of recommended design 

changes to reduce noise at sensitive components. Furthermore, it supports substrate 

modeling for a variety of processes, including BiCMOS, twin well, triple well, 

SiGe, and standard CMOS. Noise voltage waveforms at the substrate of the noise 

sensitive components will be automatically displayed and noise sensitivity analysis 

capabilities are provided. For floor planning, the noise distribution is highlighted in 

the layout in the form of equipotential noise contours across the chip surface. 

SeismIC uses faster, but less accurate solvers and can be used to analyze large 

digital circuits and entire chips. 

SPACE [12] is a practical layout-to-circuit extraction program developed at 

Delft University of Technology. It can be used to calculate a substrate resistance 

network between noise injecting and noise sensitive circuits. SPACE contains a 3D 

boundary element (BE) solver that can be used to calculate a substrate network for 

up to one hundred substrate ports. The solver uses the Laplace equation and then 
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transforms it with Green’s theorem into a boundary integral equation. The BE 

solver is accurate, but becomes slow for large circuits and consumes large amounts 

of memory. Consequently, for large VLSI circuits, a less accurate, but faster 

interpolation technique has been implemented. In this method, direct coupling 

resistances are only computed between neighboring substrate ports. To determine 

whether or not two ports are neighbors, a Delaunay triangulation is used. The nodes 

of the Delaunay triangulation are the corners of the substrate ports. The values of 

the resistances are computed using interpolation formulas based on fitting 

parameters, area, perimeter of the substrate ports, and distance between the 

triangulation nodes. The output is a SPICE netlist that contains the substrate 

resistor network and other circuit components, such as interconnects. This netlist 

can then be used as an input file for a SPICE simulator. In addition to a batch-mode 

extraction, Xspace - an interactive graphical user interface to SPACE - is also 

available. 
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3 SILENCER! OPERATION AND CAPABILITIES 

Silencer! is a simulation tool developed for substrate noise coupling analysis. It can 

be used to predict substrate noise coupling at three different stages of a mixed-

signal chip design: pre-layout block level, layout level, and post-layout verification 

level, as illustrated in Figure �3.1. This thesis mainly focuses on the layout analysis 

level. This chapter describes how to use Silencer! to determine the effectiveness of 

layout changes, interconnect optimizations, package changes, and shielding 

techniques to reduce substrate noise coupling in a layout. A detailed example is 

given in Chapter 4 for demonstration. The pre-layout analysis and post-layout 

verification stages have not been fully integrated, and consequently are not 

described in great detail. However, with the current version of Silencer! it is still 

possible to analyze substrate noise coupling at these stages. 

 

 

Figure �3.1 Substrate coupling simulation and analysis during the different stages of 
a mixed-signal IC design: pre-layout block level analysis, layout analysis, and post-
layout verification. 
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3.1 Pre-Layout Block Level Analysis 

The pre-layout block level analysis is useful for floor-planning, or to extract 

a substrate network between contacts for validating different substrate models. 

During floor-planning, Silencer! can be used to determine whether a circuit block 

will be adversely affected by substrate noise coupling problems. A block does not 

have to be fully designed yet. A layout of the most critical transistors and substrate 

contacts is usually accurate enough to get an approximate estimation of substrate 

noise coupling. 

Large digital circuit blocks may be represented as equivalent current 

sources that inject noise into the substrate. This approach is essential for circuits 

that contain thousands of devices. A transistor level circuit simulator such as 

SPICE cannot handle a very large number of substrate ports connected to the circuit 

terminals. In such cases, the circuit netlist would become too large and simulation 

time would increase significantly. 

 

 

Figure �3.2 Example for pre-layout block-level analysis in Silencer! Critical Noise 
injecting and noise sensitive blocks can be drawn using ‘SC_Inj’ and ‘SC_Sen’ 
layers. 
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 Figure �3.2 shows an example of a pre-layout block-level analysis. Circuits 

or critical parts inside a circuit can be represented as entire blocks. These blocks 

can be drawn in the same way any other layers are drawn in CADENCE. It is 

important to use the ‘SC_Inj’ and/or ‘SC_Sen’ layers, otherwise the blocks will not 

be recognized1. Silencer! has been designed to automatically distinguish between 

pre-layout block-level and layout-level analysis. Blocks can be labeled with 

‘SC_Inj’ and ‘SC_Sen’ labels placed inside the blocks. The extractor in that case 

will use the label names as terminal connections of the substrate network. 

Otherwise, the blocks will be automatically labeled as ‘cont_#’. After calculating 

the substrate network, a SPICE or SPECTRE netlist will be produced that can be 

back annotated and connected to power supplies, packages, and other circuit 

elements. 

3.2 Post-Layout Verification 

The post-layout verification level is the final and most accurate stage to 

analyze substrate noise coupling. In this stage, the entire chip layout is present, the 

layout has been extracted, and LVS has been passed. Figure �3.3 shows a possible 

flow for post-layout substrate noise coupling verification using the extracted layout 

that includes all the parasitic capacitances and interconnect inductances. 

                                                
1 Injector / sensor circuit blocks - in contrast to injector / sensor regions - do not have round corners. 

Injector / sensor regions are used to select noise injecting and noise sensitive circuitry in a layout. 

They are described in Section �3.4 and Chapter �4. 
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Figure �3.3 Flow for substrate noise coupling verification in Silencer! using the 
extracted layout including all the parasitic capacitances and interconnect 
inductances. 

First, a circuit netlist is created from the extracted layout. For instance, 

Figure �3.4 shows how the SPECTRE netlist is created using the ‘Affirma Analog 

Circuit Design Environment’. In the netlist, the bulk terminal connections of the 

NMOS transistors will most likely be connected to ground and those of the PMOS 

transistors to vdd, respectively. The bulk connection of the terminals will depend 

on the definitions in the extraction rules file. In order to connect the substrate 

network, these bulk terminal connections have to be mapped to the corresponding 

substrate network nodes. Labeling the bulk terminals of the transistors in the netlist 

is the second step in the post-layout verification process. 
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Figure �3.4 Using the ‘Affirma Analog Circuit Design Environment’ to create a 
SPECTRE netlist from the extracted layout. 

Second, the substrate network created during the layout analysis can be back 

annotated into the netlist. The netlist can be used to perform a transient analysis and 

display the voltage waveforms at critical nodes of the sensitive circuits.  

3.3 Silencer! Inputs and Outputs for Layout Level Analysis 

To run Silencer! for layout level analysis, one needs to extract as much 

geometric information as there is available at the current stage of layout. For 

example, the only geometric information obtainable may be the physical locations 

of the NMOS transistors. However, some information about the routing from the p-

taps to the power supply ground may also be available. In that case, this 

information would be another input to Silencer!. In other words, the more inputs 
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that are available - or the designer is able to estimate - the more precise the outputs 

created by Silencer! will become. More accurate outputs also mean more accurate 

prediction of switching and supply noise coupling into the substrate. Figure �3.5 

illustrates the inputs and outputs that are incorporated in the Silencer! tool. 
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Figure �3.5 Inputs and outputs that are available in Silencer! 
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3.3.1 Schematic and Layout 

The first two inputs to Silencer! are a completed and verified schematic of 

the circuits and a layout - or at least some key parts of it. The bulk terminals of the 

NMOS transistors in the schematic have to be labeled and left floating because 

Silencer! uses them as connection terminals to connect the substrate network. There 

are no conventions about how to label the bulk terminals, but it is suggested to use 

a label that contains the transistor name and an extension for bulk, e.g., ‘bk’. In this 

way, the terminal can be easily identified in the layout or netlist, if necessary. The 

same names will be used to label the corresponding substrate ports in the layout, 

underneath the NMOS active regions. 

Silencer! operates within the CADENCE DFII database and is integrated 

into the Virtuoso layout editor. Therefore, the circuit layout has to be designed in 

Virtuoso. As mentioned before, the layout does not necessarily have to be 

completed to perform substrate noise coupling analysis. However, the minimum 

requirements are an approximate estimation of the transistor sizes and locations, 

e.g., an approximate layout of the p-cells. To be able to model supply noise and 

apply noise shielding techniques, substrate contacts (p-taps), and eventually some 

critical interconnects that connect the circuits to the power supply should be 

present. It should be noted that if the interconnects are neglected, the p-taps must 

not be left floating, but have to be connected to ground. This may cause an 

underestimation of the noise present in the substrate due to the fact that supply 

noise is neglected. 

3.3.2 Substrate Models 

The next Silencer! input is a precise substrate model. Modeling of the 

physical properties of the substrate is required in order to get an accurate prediction 
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of how noise propagates through the medium. Over the past years, many methods 

have been developed to model the physical properties of the substrate. These 

methods can be divided into three groups: finite difference methods [13], [14], 

boundary element (BE) methods [2], [3], and scalable macro-models [4], [5], [15]. 

A detailed description of the various methods can be obtained from the appropriate 

references. Silencer! operates with two different types of substrate model extraction 

methods to obtain a substrate model: a boundary element (BE) method (EPIC) [7], 

and a fast, scalable macro-modeling approach. For the macro-modeling approach, 

two different algorithms have been implemented. 

EPIC is a Green’s function based boundary element substrate parasitic 

extractor. In contrast to the other Green’s function based BE extractors, such as 

SCA, EPIC assumes a finite die size specified by the user. Silencer! provides a 

special layer called ‘SC_Chip’ to define the die size. EPIC treats the substrate area 

formed by the devices and contacts as two or three layers of uniformly doped 

semiconductor material with a certain thickness. A correct doping concentration 

and thickness of each of these layers is essential to calculate the substrate network. 

These parameters can be obtained from the spreading resistance profile (SRP) of 

the process. The output of EPIC is a pi-shaped substrate impedance network, which 

is resistive for low frequencies. Like the network obtained from the macro-

modeling approach, the EPIC network includes cross-coupling resistances between 

the contacts and resistances from the contacts to the backplane. 

The macro-model described in [6] is based on z-parameters and is scalable 

with contact geometry (area, perimeter) and separations. A z-parameter matrix of 

the substrate network can be calculated using the following equations: 
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where K1, K2, K3, 2 and 3 are process dependent parameters and x is the distance 

between the contacts. From the z-parameter matrix, a pi-network can be obtained. 

3.3.3 Substrate Port Definition File 

A ‘Substrate Port Definition File’ is another important input of the Silencer! 

tool. It contains information necessary to locate the substrate ports in a specific 

technology. Substrate ports may be bulk terminals of NMOS transistors, p-taps 

routed to ground, capacitances of wells connected to n-taps and routed to Vdd, 

parasitic interconnect capacitances, and other technology specific structures. The 

Silencer! substrate port definitions are specified in the ‘Silencer.ini’ file between 

the key-words ‘ports=’ and ‘end’, as illustrated in Figure �3.6. 

 
;-------------------------------------------------------------------- 

; Setup file for substrate coupling analysis tool version 1.4  

;--------------------------------------------------------------------  

 

;-------------------------------------------------------------------- 

; Substrate port definitions (all different port types are listed 

; here. Remark: The FIRST line defines the p-substrate-taps ) 

; portName (max. 8 characters) layer1 OVERLAPS layer2 OUTSIDE layer3 

;-------------------------------------------------------------------- 

ports= 

 ptap_  active  pplus  nwell 

 nblk_  active  nplus  nwell 

end 

. 

. 

. 

Figure �3.6 Substrate port definitions specified in ‘Silencer.ini’ file. The illustrated 
example is set up for the two dominating substrate ports present in the TSMC 
0.35µm process. 
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Due to the layout topology and the low frequency of operation of the 

fabricated test circuits, Silencer! has been set up to distinguish between two types 

of substrate ports in a TSMC 0.35µm heavily doped CMOS process. However, 

more substrate ports could easily be added by extending the port definitions. 

The first line after the key-word ‘ports=’ defines the substrate p-taps, which 

are responsible for substrate noise injection from the power supply. The second line 

classifies the connections between the substrate network and the NMOS transistor 

bulk terminals. From these ports, substrate noise can be picked up by the sensitive 

circuits. These ports also account for switching noise that is injected from digital 

circuits. Specific information about the ‘Silencer.ini’ file is given in Appendix B. 

3.3.4 Interconnects and Package 

The last two inputs available in Silencer! are the interconnect and package 

information. Interconnects are thin, long metal traces that connect the substrate and 

well connections to the power supply. Moreover, they provide electrical 

connections between circuit blocks to distribute analog and digital signals. Like the 

package parasitics, interconnects help improve the accuracy of the substrate 

coupling analysis, if they are included. The current version of Silencer! does not 

model substrate current that gets capacitively injected into the substrate from 

switching interconnects or wells since these capacitances are small and do not play 

an important role for frequencies below a few gigahertz. However, metal traces 

between the circuits and the substrate supplies (or power grids for larger circuits) 

have finite and often large resistances and are non-ideal connections to the power 

supplies. Therefore, noise in the ground traces will directly get coupled into the 

substrate through the substrate taps. Silencer! allows defining of such interconnects 

as L-R-series networks, which are also automatically connected to the circuit 

schematic. 
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Similar to the interconnects, it is essential to include the parasitic 

inductances and capacitances of a package, pin, bond-pad, bond-wire, and metal 

traces, in order to obtain an accurate prediction of the substrate noise coupling. 

Once a working schematic has been developed, package information can be 

included in the schematic as the last input to Silencer! Packages are usually 

characterized by the manufacturer and can be defined in a CADENCE library. 

3.3.5 Geometric Port Information 

Once the circuits of interest have been selected in the chip layout, the 

substrate ports for the process can be located. The geometric port information is 

saved in two different files; one contains the coordinates, area, and perimeter of the 

ports, the other one is an input file for the EPIC substrate network extractor. Both 

files provide the geometric information necessary to extract a substrate network. 

This information may be used in the future for an iterative optimization. The 

geometric port information is the first output of Silencer! 

3.3.6 Layout with Substrate Ports 

The second output is a copy of the Virtuoso layout that contains all located 

substrate ports. During the process of locating the substrate ports in the layout, all 

ports that were found will automatically be marked with an injector or sensor layer, 

and labeled - unless they were manually labeled beforehand. An automatic 

recognition of different port types is possible with the help of the ‘Substrate Port 

Definition File’ described in Section �3.3.3 and the CADENCE DFII Database. The 

layout and the detected substrate ports will be presented in a new layout cell view, 

whereas the original cell view remains untouched. 
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3.3.7 Substrate Network 

The third Silencer! output is the substrate network that includes cross-

coupling resistances between the contacts and resistances from the contact to the 

backplane. The substrate network can be extracted after the substrate ports have 

been located. It is be stored as a SPECTRE or SPICE netlist. The node names in the 

network match the port names in the layout. 

3.3.8 Networks Back Annotated to Schematic  

Once a substrate network has been calculated and an interconnect network 

has been defined, both networks can automatically be connected to the 

corresponding terminals in a newly created schematic view. A schematic that 

includes the connected substrate and interconnect networks is the fourth Silencer! 

output. The original schematic view remains untouched.  

 

 
 

Figure �3.7 Connecting a resistive substrate network to a NMOS transistor. The 
junction capacitances Csb and Cdb are already included in the BSIM3 models. 

Figure �3.7 illustrates how Silencer! connects the resistive substrate network 

between an NMOS transistor drain/source region and the p+ substrate contact (p-



 

 

30 

tap) next to the transistor. In addition, the non-ideal p-tap to ground connection due 

to routing resistances and package inductances is shown. 

It should be noted that the substrate models used in Silencer! were 

developed to calculate a resistive pi-network between multiple p+ contacts. 

However, the substrate port that connects the resistors R12 and R1b to the 

transistor bulk terminal is actually a pn-junction. To be correct, it would therefore 

be necessary to extract a resistance between p+ and n+ contacts rather than between 

a p+ / p+ contact. Nevertheless, for the TSMC 0.35µm heavily doped process, 

Silencer! has been set up to use the entire region underneath an NMOS transistor as 

a substrate port to extract the substrate network. This simplification may cause 

some overestimation of substrate noise. However, it will be used until a p+ / n+ 

substrate model has been developed and implemented. 

3.3.9 Voltage Waveforms 

After computing and connecting the substrate and interconnect networks 

between the substrate ports, the impact of substrate noise, combined with the 

switching behavior of the digital circuits, can be analyzed. SPECTRE or any other 

transistor level simulator may be used to perform a transient analysis of the new 

schematic and display the voltage waveforms at the sensitive analog circuit nodes 

of interest. 

3.4 Silencer! User Interface 

The user interface of Silencer! is illustrated in Figure �3.8. A special layer is 

provided to define the chip boundary for Green’s function based extractors. The 

menu item ‘Define Chip Boundary’ selects that layer so that the chip boundary can 

be drawn. If no boundary is defined, Silencer! will automatically suggest one.  
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Selection layers are available to select regions that inject noise in the chip 

and regions that are sensitive to it. This is useful in large designs if the designer 

wants to analyze only some specific circuits (or the most critical circuits) on the 

chip rather than the entire chip. Silencer! will only look for substrate ports within 

the boundary of the defined injector and sensor regions. 

The menu item ‘Add Networks into Schematic’ can be used to connect an 

existing substrate and interconnect network to a schematic view. This is useful if 

changes in the schematic, but not in the layout have to be made. No changes in the 

layout means that the substrate and interconnect networks did not change and, 

therefore, do not have to be re-calculated. 

 

 

Figure �3.8 Silencer! user interface integrated into the CADENCE DFII Virtuoso 
layout editing tool. 

A ‘Models & Options’ window, shown in Figure �3.9, will appear on the 

screen after the menu item ‘SELECT Models & Options’ was selected. It allows 

selecting between several options for substrate coupling simulation and analysis. 
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Figure �3.9 The Silencer! ’Models & Options’ window. 

The first option is the substrate model type. There are three different models 

available: Macro-model1, Macro-model2, and EPIC. The first two are z-parameter 

based scalable macro models [5], [6], [21] whereas EPIC is a Green’s function 

based substrate parasitic extractor [7]. Figure �3.10 shows the model parameter 

window for EPIC parameters. 

Once a model has been chosen, it is possible to select whether the resistor 

network will be generated in a SPICE or SPECTRE format. If there are very large 

resistor values present in the substrate network, they can be discarded to simplify 

the network. Further options are whether or not the backplane of the chip will be 

grounded, or the substrate resistor network should be displayed in the schematic. 

Finally, critical interconnect parasitics can be defined in the ‘Models & Options’ 

window by pressing the ‘Tap Interconnects’ button. Another window that contains 

a list of all the p-taps in the layout will pop up on the screen. The input mask allows 

entering all critical interconnects. If no interconnects are defined, it is necessary to 
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ground the p-taps. No p-tap should be left floating. However, before the list of p-

taps is available, the substrate ports in the layout have to be detected. 

 

 

Figure �3.10 Model parameter window for EPIC parameters. This window contains 
the doping concentration and thickness of a two or three layer substrate and some 
options for the calculation. 

The menu item ‘LOCATE Substrate Ports’ searches for all places on the 

chip within the defined injector/sensor regions, where substrate noise gets injected 

or picked up. 

Finally, the menu item ‘CALCULATE Substrate Network’ reads the 

previously detected substrate port locations and extracts a substrate network 

connecting to these substrate ports. More information about locating the substrate 

ports, calculating the substrate network, and the user interface in general can be 

found in Chapter 4. 
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4 SUBSTRATE NOISE COUPLING ANALYSIS AND OPTIMIZATION 

AT DIFFERENT STAGES OF THE LAYOUT DEVELOPMENT 

To demonstrate substrate noise coupling analysis and optimization, a simple 

example consisting of a substrate noise injecting inverter circuit and two substrate 

noise sensitive common source amplifiers with passive loads is described in this 

Section. First, the example will be designed and then, the layout will be improved 

step by step to reduce substrate noise coupling. During the different stages of 

design more detailed information, such as interconnects and package will be added. 

4.1 Description and Simulation of a Simple Example 

The example has been designed in the TSMC 0.35µm heavily doped 

process. All NMOS transistors are of size W/L =200µm/0.8µm with four fingers. 

The PMOS transistor is twice the size of the NMOS transistors, with 8 fingers. 

The schematic for the example is shown in Figure �4.1. The bulk terminals 

of the transistors in the schematic are floating, but labeled with ‘M1bk’, ‘M2bk’, 

and ‘M3bk’, where ‘M#’ stands for the transistor name, and ‘bk’ for the bulk 

terminal. This labeling is used for the following reason: The bulk terminals as well 

as the substrate contacts are physical locations in the layout - called substrate ports. 

These are locations where noise can get coupled into the substrate or picked up by a 

sensitive circuit. In Silencer!, substrate ports can be manually labeled. However, 

usually the designer would only label substrate ports that are also visible in the 

schematic, such as the bulk terminals. Taps are not shown in the layout and, 

therefore, it makes sense to let Silencer! name them automatically. For a correct 

connection of the substrate network in the schematic or circuit netlist, the bulk 

terminal labels have to match with the labels given in the layout. 
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Figure �4.1 The schematic of the simple example consists of a digital inverter circuit 
and two common source amplifiers with a passive load. The bulk terminals are 
labeled and left floating. 

Figure �4.2 shows the layout of the four transistor p-cells for the example. It 

should be noted that each of the NMOS transistors has a p-plus substrate contact 

(also called p-tap) placed at one of its sides. The PMOS transistor, on the contrary, 

is tied to the n-well with two n-plus contacts at each side. Furthermore, the 

common source amplifier transistors on the top are separated by s = 10µm from the 

bottom inverter transistors. 
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Figure �4.2 Layout of transistor p-cells and substrate taps for the simple example. 
The two top transistors belong to the common source amplifiers and the other two 
to the inverter. 

As is typical for mixed-signal designs, the power supplies for the noise 

injecting circuits (vdd_inj) are kept separate from the supplies of the sensitive 

circuits (vdd_sens). The inverter input signal (vi_inj) is a 500kHz clock with 

rise/fall times of 1ns. Both the common source amplifiers are biased with a 620mV 

DC and have an input sine wave of 10mV/100kHz applied at their common input 

(vi_sen). 

Once the transistors in the layout have been labeled with the same names as 

the bulk terminals in the schematic, a chip boundary can be defined (first Silencer! 

menu item). Then, circuits (or parts of a circuit) that are injecting substrate noise or 

are sensitive to it have to be selected by drawing an injector/sensor region layer 

across it (second and third Silencer! menu item). 
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Figure �4.3 Define chip boundary and select injector/sensor regions for circuits that 
could be injecting substrate noise or be sensitive to it. 

Figure �4.3 shows the injector and sensor region layers that were drawn on 

top of the inverter and amplifier transistors, respectively. After selecting the menu 

item ‘LOCATE Substrate Ports…’, the tool automatically detects p-tap and 

transistor bulk ports that are underneath a injector/sensor region layer. P-taps are 

defined in the first line of the ‘Spectre.ini’ file between the key-words ‘ports=’ and 

‘end’. More information about this file can be found in Appendix B. Furthermore, 

two files ‘subsPort.txt’ and ‘EPICinput.dat’ will be generated. The file 

‘subsPorts.txt’ for the simple example is shown in Figure �4.4. It contains the 

coordinates, perimeters, and areas of the substrate ports and is used as the input file 

for the macro-models. The file ‘EPICinput.dat’ contains additional parameters, 

besides the geometric information of the substrate ports and is shown in Figure �4.5. 
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;-----------------------Geometric-Port-Data------------------------  
;Name / lower left(x/y) / upper right(x/y) / Perimeter / Area  
;------------------------------------------------------------------  
ptap_0 60.25 100.95 110.25 101.75 101.6 40 
M1bk 60.25 103.25 110.25 111.15 115.8 395 
ptap_2 60.25 141.1 110.25 141.9 101.6 40 
ptap_3 115.8 141.1 165.8 141.9 101.6 40 
M2bk 60.25 131.7 110.25 139.6 115.8 395 
M3bk 115.8 131.7 165.8 139.6 115.8 395 

Figure �4.4 The file ‘subsPorts.txt’ for the simple example contains the names, 
coordinates, perimeters, and areas of the substrate ports. 

3 1000 1000     
1 0.0230956 194.598     
2 4.12237 4.637     
3 0.187458 0.765272     
       
4096 0.5 6     
1 1e-08      
       
6       
0 0      
0 60.25 100.95 110.25 101.75   
1 60.25 103.25 110.25 111.15   
2 60.25 141.1 110.25 141.9   
3 115.8 141.1 165.8 141.9   
4 60.25 131.7 110.25 139.6   
5 115.8 131.7 165.8 139.6   
6       
1 1 1     
2 1 2     
3 1 3     
4 1 4     
5 1 5     
6 1 6     
0       

Figure �4.5 The file EPICinput.dat for the simple example will be used as an input 
file for the substrate network extractor EPIC. 



 

 

39 

 

Figure �4.6 After detecting all the substrate ports underneath the injector/sensor 
region layers, the recognized ports will be marked, and labeled. 

 Figure �4.6 shows the layout after Silencer! has located the substrate ports. 

Since the noise injector switches below 1MHz, the network from the PMOS 

transistor and the n-well can be neglected. Consequently, no substrate ports for the 

PMOS transistors were defined in the file ‘Silencer.ini’ for this example. 

 In the next step, a pi-structure resistive substrate network to model the 

substrate properties has to be extracted. But before that, it is necessary to connect 

the p-taps to a specific potential, otherwise they would be floating. At the same 

time, several other options for the substrate network calculation can be selected.  

After clicking on the menu item ‘SELECT Models & Options…’, the 

window shown in Figure �4.7 pops up. It allows entering the p-tap connections (and 

other interconnect of interest) and further options for the substrate network 

calculation. In this example, EPIC has been chosen to extract the substrate network. 

Moreover, options have been enabled to discard resistors greater than 1M�, leave 

the backplane floating, and finally, back annotate and connect the substrate and 

interconnect networks automatically to the schematic. 
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Figure �4.7 The ‘Models & Options’ window allows choosing between three 
substrate network extraction models. Further options as well as the p-tap 
connections can be defined at the same time. 

To connect the p-taps, which Silencer! has labeled with ‘ptap_#’ in the 

layout (see Figure �4.6), the button ‘Tap Interconnects…’ has to be pressed. If done 

so, a new input mask to enter the p-taps will appear on the screen, as shown in 

Figure �4.8. This mask provides a list with all p-taps that Silencer! detected in the 

layout. 

It should be evident that p-taps will usually be routed to a ground potential 

in a later stage of design. This can be done by connecting the p-taps to the source 

terminals of the NMOS transistors, or route them separately to a ground pin. Since 

there is no information about the routing available at this stage, p-taps can simply 

be connected to ground. However, it is important to keep in mind that noise 

injected through the supply is neglected in this case. 
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Figure �4.8 Input mask provided by Silencer! to define the connections of the 
substrate taps and the other interconnects. 

Interconnects, such as the p-tap connections, are stored in the file 

‘ptapsItco.txt’. This file can be edited anytime by changing, deleting, or adding 

interconnects. For the example, all three p_taps have been connected to ground 

(R_itc = 0 and L_itc = 0 for ptap_0, ptap_1, and ptap_2). The command in the input 

masks will tell ‘<3> Interconnects Added’. 

After all windows have been closed (after pressing the ‘OK’ button), the 

menu item ‘CALCULATE Substrate Network…’ can be selected. After a few 

seconds of calculation time (the calculation time depends on the substrate model 

and the number of substrate ports in the layout) the entire substrate and 

interconnect network will automatically be back annotated to the schematic view. 

The new schematic (name of original schematic and suffix ‘_snc’) for the example 

is shown in Figure �4.9. 
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Figure �4.9 The substrate network and connection from the p-taps to ground have 
been back annotated to the new schematic view. 

Furthermore, Silencer! has created the file ‘SCnetlist.txt’ that contains the 

substrate network in SPECTRE format in the ‘Silencer/Files’ folder. Due to the fact 

that EPIC was chosen to extract the substrate network, the logfile ‘epic_output’ has 

been created. In the case, where a network extraction would fail or encounter 

problems, an answer to the problem and possible solutions can be found in that file.  

The newly created schematic is now ready for simulation and substrate 

coupling analysis. A transient analysis using SPECTRE can give the desired 

information about the substrate noise that gets coupled from the inverter circuit to 

the sensitive amplifiers. A simulation of the example using the ‘Affirma Analog 

Circuit Design Environment’ with appropriate models for the TSMC 0.35µm 

process is shown in Figure �4.10. 
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Figure �4.10 Substrate noise coupling analysis using SPECTRE from the ‘Affirma 
Analog Circuit Design Environment’. 

1.350

1.450

1.550

1.650

1.750

1.850

1.950

0.0E+00 2.0E-06 4.0E-06 6.0E-06 8.0E-06 1.0E-05 1.2E-05 1.4E-05 1.6E-05 1.8E-05 2.0E-05

Time (sec)

V
ol

ta
ge

 (V
)

 

Figure �4.11 Common source amplifier output signal, vo2, degraded due to substrate 
noise. 
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Figure �4.11 shows the degraded, amplified output voltage observed at the amplifier 

output vo2. To minimize the substrate noise coupling crosstalk between these 

circuits, the layout has to be improved. The following Section explains how this 

can be achieved using the flow shown in Figure �4.12. 

4.2 Optimization of Layout to Reduce Substrate Noise Coupling 
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Figure �4.12 Flow for optimization of the layout to reduce the effects of substrate 
noise coupling at different stages of design. 
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Using the simple example described previously, the flow shown in 

Figure �4.12 is used to perform substrate noise coupling analysis and optimization at 

different stages of the layout. 

First, an optimum spacing between the inverter and the amplifiers will be 

determined. Second, all interconnects between the ground and power supply lines 

will be added in the layout. This will cause ground bounce and increases the total 

amount of substrate noise injected. Third, the layout will be changed to minimize 

the resistor value in the metal traces to reduce ground bounce. Fourth, once the 

interconnect network has been added, additional grounded p-taps will be placed in 

the layout to suppress substrate noise cross-talk. Finally, a PGA132 package will be 

included which adds L*di/dt noise, due to the package line inductances. 

4.2.1 Separating Noise Injecting and Noise Sensitive Circuits 

This Section describes how the effect of substrate noise can be optimized by 

finding an optimum separation between the p-cells of the noise injector and noise 

sensor circuits. As previously shown in Figure �4.2, the switching inverter 

transistors are separated from the sensitive amplifiers by a separation s. To find the 

optimum separation s, we can vary s from 10µm to 100µm and recalculate the 

substrate network for each case2. It can be observed that with a larger separation, 

there is less noise coupling [19] due to the characteristics of a heavily doped 

substrate with floating backplane. Figure �4.13 illustrates that the maximum peak-

to-peak noise at s = 10µm is 72mV. If the distance is s = 20µm, this value 

decreases to 48mV (curves are time-shifted for illustration purposes). Since the 

substrate is heavily doped and the backplane is floating, the noise will not decrease 

more beyond a certain separation. This is shown in Figure �4.14. To avoid wasting 

                                                
2 Finding the optimum spacing s between noise injecting and noise sensitive circuitry could be done 

in an iterative optimization loop. 
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valuable die area, an ideal separation between the circuits for our example is s = 

30µm. 
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Figure �4.13 Substrate noise decreases by increasing the separation between the 
switching inverter and the amplifiers. 
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Figure �4.14 Substrate noise peak-to-peak voltage as a function of spacing s. After s 
= 30µm the noise does not decrease as the graph flattens out. 
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4.2.2 Reduction of Ground Bounce and Supply Noise 

Substrate noise injected through the supply lines is significant and can not 

be neglected. Consequently, an estimated value for the routing impedance should 

be included in the simulation as the next step. To visualize this step, the routing of 

the p-taps to the source terminals and to the bond-pads has been included in the 

layout, as shown in Figure �4.15. The corresponding schematic is shown in 

Figure �4.16. The source terminals in the schematic are not connected to ground 

anymore, but left floating instead. They have been labeled with s1, s2, and s3 to 

connect the resistive interconnect network illustrated in Figure �4.17. The 

interconnect network connects a resistor between the source terminals and the 

ground/vdd pads. It has been defined in Silencer! using the input mask shown in 

Figure �4.8. 

 

 

Figure �4.15 All transistor terminals are routed to the bond-pads. In particular, the p-
taps are directly connected to the source terminals. 
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Figure �4.16 Schematic of the inverter and the amplifiers to which the substrate and 
interconnect networks will be back annotated. 
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Figure �4.17 Interconnect network with the most critical routing resistor values in 
the ground and power supply lines. All inductances are zero (low frequencies) and 
the substrate p-taps (ptap_0, ptap_2, p_tap3) are routed ideally to the source 
terminals. 

Due to the non-ideal ground connections, not only switching but also supply 

noise (ground bounce) can now be observed. In our example, the peak-to-peak 

value of the noise increases from 40.4 mV to 47.7mV. 

 

 

Figure �4.18 Improved layout with less interconnect routing to ground helps reduce 
substrate noise injected from the power supply. 

To improve the routing from the source terminals and p-taps, the layout has 

been improved, as illustrated in Figure �4.18. As in the previous layout, the p-taps 
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are directly connected to the source terminals. However, the routing from the 

source terminals to the injector and the sensor ground pad is much shorter. Further, 

the separation between the inverter and the amplifiers is now greater than 170µm. 

 Analyzing the improved layout and comparing it with the previous one, the 

maximum peak-to-peak noise at the output vo2 has now decreased from 47.7mV to 

42.5mV. Note that the noise in the ideal case (no supply noise) was 40.5mV. 

4.2.3  Shielding Inverter from Amplifiers 

The question now is how can the coupling from the inverter to the common 

source amplifiers be further decreased? Let us experiment by adding an additional 

substrate p-tap at the other side of the NMOS inverter transistor to shield the 

inverter better from the amplifiers, as illustrated in Figure �4.19. The p-tap absorbs 

noise from the substrate and deflects it away from the sensitive amplifiers. 

However, it should be noted that if the p-taps and the other noise mitigation 

techniques are used at the wrong place, they can aggravate the problem by bringing 

noisy supplies closer to sensitive devices! 

 

 

Figure �4.19 Additional p-tap substrate contact included next to the NMOS 
transistor of inverter. Both p-taps are routed to the source terminals and a ground 
pad. 
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 If both p-taps are connected together and routed with a short interconnect to 

the injector ground bond-pad, there is a very low impedance path to ground which 

will absorb most of the noise. Simulations of the noise at the output vo2 of the 

amplifier show that the noise voltage decreases from the previous 42.5mV to 

18.6mV, which is significant. 

4.2.4 Separating Routing of p-Taps and Source Terminals 

Another improvement may be made by isolating the p-taps of the noise 

injector from the source terminals, shown in Figure �4.20. However, this solution 

requires an additional bond-pad. 

 

 

Figure �4.20 The two p-taps and the source terminal are routed to separate ground 
pads, as another noise mitigation technique.  

 It can be observed that the noise decreases only very little for this case; 

from 18.6mV to 17.9mV. Consequently, this solution is not recommended for the 

current layout since the improvement is only small, but requires an additional bond-

pad. However, if this noise mitigation technique is used in a layout with long 
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ground and supply interconnects, like the layout in Figure �4.15, it may reduce 

ground bounce significantly. 

 Finally, including the package in the schematic, as shown in Figure �4.21, 

changes the noise signature again. The package acts as a low-pass filter and 

increases the substrate noise from 18.6mV to 34.1mV. The parasitic elements of the 

PGA132 package are shown in Figure �4.22. These elements vary from pin to pin. 

Therefore, choosing a pin with low metal trace and line inductance may help 

reducing supply noise injected to the substrate due to the package. 

 

 

Figure �4.21 PGA132 package included in the schematic. 
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Figure �4.22 Schematic of PGA132 package parasitic elements between the package 
bond-pad and the package pin. 

4.2.5 Summary of Layout Optimization 

Table �4.1 and Figure �4.23 summarize the described methods to suppress 

substrate noise between the inverter and the amplifiers in the simple example. For 

better illustration, the switching events are time-shifted. 

Table �4.1 Summary of optimization results for the simple example shown in 
Figure �4.23. 

A P-cell transistor layout with p-taps 
ideally grounded 

 E Additional p-tap for injector 
added 

B Optimized distance between p-
cells 

 F P-taps and sources are separately 
routed to a pin 

C Interconnects in ground and sup-
ply traces added 

 

D Optimized layout to reduce inter-
connects in ground and supply 
traces 

 

G Including the package parasitics 
of PGA132 package 
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Figure �4.23 Summary of optimization results for the simple example. The substrate 
noise for the various conditions (A - G) is shown in Table �4.1. 

Once the layout has been optimized, a final accurate substrate coupling 

simulation can be performed from the completed and extracted layout, as described 

in Section �3.2. If the results are satisfactory, the chip is ready for tape out. 

Otherwise, where necessary, more guard rings, trenches, separate power supplies 

can be added. In addition, the power and ground interconnects may have to be 

redesigned, or transistors may be moved to a different location. For heavily doped 

substrates in particular, substrate noise can be reduced significantly if the backplane 

of the chip is grounded. 
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5 SIMULATION AND MEASUREMENT RESULTS 

A test chip fabricated in a TSMC 0.35µm heavily doped CMOS process was 

designed to test the capability of Silencer!. This chip, shown in Figure �5.2, contains 

several circuits that are injecting noise into the substrate (ring oscillators, stepped 

buffers) and others that are sensitive to it (operational amplifiers, sensing options, 

charge pump). This chapter describes simulation and measurements of substrate 

noise coupled from a stepped buffer to a folded cascode amplifier in unity-gain 

configuration, illustrated in Figure �5.1. 

 

 

Figure �5.1 Noise coupling from a stepped buffer to a folded cascode amplifier in 
unity-gain configuration. The noise coupled from the digital block is measured at 
the output of the amplifier. 
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Figure �5.2 Layout of fabricated test chip in a TSMC 0.35µm process with epitaxial 
substrate. 

A micrograph of two circuits on the test chip, a 7-stage stepped buffer with 

load and a folded cascode amplifier, is shown in Figure �5.3. Stepped buffers are 

used in many digital designs to provide buffering for clock and off-chip signals. 

For testing purposes, they serve as realistic digital noise generators. The amplifier 

represents a typical analog circuit that is sensitive to noise. 



 

 

57 

 

Figure �5.3 Micrograph of the portion of the test chip that was used for measuring 
substrate noise coupling from the stepped buffer to the opamp. 

5.1 Measurement Setup 

Figure �5.4 shows the setup for measuring substrate noise at the output of the 

folded cascode opamp in unity-gain configuration. 

Folded cascode 

amplifier 

7-stage stepped buffer 
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Figure �5.4 Setup for measuring substrate noise injected by the stepped buffer and 
picked up by the opamp (at the output of the opamp). 

The stepped buffer is injecting substrate noise due to the switching behavior 

and the parasitics in the power supply lines (routing and package). The input signal 

for the stepped buffer is a 3Vpp/1MHz clock signal generated by a function 

generator. The stepped buffer has two ground pins, one of them is routed to the 

NMOS transistor source terminals, the other one to the p-taps. On the board, these 

two ground are shorted and connected to the same power supply. The setup for the 

stepped buffer is summarized in Table �5.1. 

Table �5.1 Stepped buffer setup - supplies and equipment that was used for the 
measurements. 

Input (50� termination) Function Generator 0-3V 
/ IMHz clock 

HP 3325 B 

Vdd = Svdd /gnd = Sgnd 3V / 0V Agilent E361 A 
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The positive input terminal of the opamp is connected to a 1.5V DC voltage 

source (no sine wave is applied at the input). In addition, the output of the opamp is 

connected on the circuit board to a buffer with a high input impedance and 50� 

output impedance. The characteristics of the buffer are a very high bandwidth and a 

low distortion. Its output is directly connected to the oscilloscope with a 50� BNC 

cable and allows a low impedance and reflection-free connection between the 

output of the opamp and the oscilloscope. The setups for the opamp and the buffer 

are shown in Table �5.2 and Table �5.3, respectively. The configuration of the buffer 

is shown in Figure �5.5 (without 50� resistor between V1 and ground). 

Table �5.2 Folded cascode opamp setup - supplies and equipment that was used for 
the measurements. 

VinDC 1.5V dc Agilent E361 A 
output The stepped buffer output is con-

nected to input of buffer 
 

vdd/vss 3 V / 0V Agilent E361 A 
Rbias 100k�  

 

Table �5.3 Setup for OPA 642P that is used as 50� line driver. 

output The buffer output is connected to the oscilloscope (Tectronix 
TDS784D). Furthermore, a 3.3�F capacitor between the 50� 
output resistor and the output BNC connector is used to 
decouple DC (allows connecting the spectrum analyzer). The 
dc-decoupling does not affect frequencies greater than 
100kHz. 

vdd/vss 6V / 0V Agilent E361 A 
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Figure �5.5 Wideband, low distortion, low gain opamp OPA642 used to connect a 
50� BNC connector between the opamp output and the oscilloscope. 

There are three separate power supplies for the stepped buffer, the opamp, 

and the buffer. All supplies are well decoupled with two parallel capacitors 

(electrolyte capacitor in parallel with a fast ceramic capacitor) placed right next to 

the supply/ground pins. To get exact results, it is essential to have good, quiet 

power supplies and prevent noise coupling into the chip from the circuit board. 
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5.2 Substrate Noise Coupling Simulation and Analysis 

A complete schematic of the stepped buffer and common source amplifier in 

unity gain configuration is shown in Figure �5.6. The schematic contains all the 

necessary elements for substrate coupling analysis. Silencer! has been used to 

automatically extract a substrate resistor network from the circuit layout (only part 

of the network is visible). This network is back annotated in the schematic, together 

with the interconnect network and the package information. In addition, all the 

supplies and input signals are connected to the schematic. 

 

 

Figure �5.6 Circuit schematic for the stepped buffer and the folded-cascode 
amplifier including package parasitics, routing interconnects, and the substrate 
network. 
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After a SPECTRE simulation using the CADENCE ‘Analog Environment’, 

the transient voltage waveforms can be displayed. The simulated and measured 

transient output of the amplifier with the stepped buffer running at a clock 

frequency of 1MHz is shown in Figure �5.7. From these results it is clear that the 

simulation of the substrate noise coupling is in good agreement with measurements. 

5.3 Simulations Compared with Measurements 
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Figure �5.7 Simulation (top) and measurement (bottom) of the folded cascode 
amplifier output in unity-gain configuration when the stepped buffer is operating at 
1MHz. 
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 In heavily doped substrates, substrate noise coupling can be reduced if the 

backplane is grounded. The p+ diffusion ring (die-perimeter ring) placed around 

the perimeter of the chip, shown in Figure �5.2, allows grounding the backplane 

through a pin. It causes a low impedance connection to the backplane represented 

with the resistor Rdpr_ring in Figure �5.8. One terminal of this resistor is the 

backplane. The other terminal is connected to a package pin via bond-pad, bond-

wire, bond-finger, and package metal trace.  

 

Figure �5.8 Top-view (top) and cross-Section (bottom) of a chip with die-perimeter 
ring. Due to the low impedance path from the die-perimeter ring to the backplane, it 
can be grounded through a pin. 
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 Figure �5.9 compares the simulation and measurement results of the 

substrate noise coupling to the output of the opamp if the backplane is grounded 

through a pin. There is much less substrate noise present at the output of the 

amplifier. 
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Figure �5.9 Simulation (top) and measurement (bottom) of the folded cascode 
amplifier output in unity-gain configuration when the stepped buffer is operating at 
1MHz and the die perimeter ring is grounded through a pin. 
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5.4 Accuracy Versus Speed of Models 

This Section compares the two substrate modeling approaches (macro-model 

and BE substrate network extractor) in accuracy and speed. In the fabricated 

example described in the Sections �5.2 and �5.3, supply noise was the dominant 

source of substrate noise. To predict the correct amount of substrate noise at the 

output of the opamp, it was essential to include not only the interconnect 

resistances of the ground metal traces but also the package parasitics. 

To compare the substrate models, the same example with the stepped buffer 

and the opamp is used. However, only the substrate resistor networks are 

connected. The switching noise (1MHz frequency) injected by the stepped buffer 

NMOS transistors will propagate through the substrate and appear at the output of 

the opamp. Supply noise will be neglected by grounding all p-taps ideally (no 

interconnects) and removing the package information. In addition, the backplane is 

left floating. 

Figure �5.10 shows the schematic for the simulation of the stepped buffer and 

the folded cascode amplifier in unity-gain configuration. Only the substrate resistor 

network is connected to the bulk terminals of the NMOS transistors. 
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Figure �5.10 Circuit schematic for the stepped buffer and the folded cascode 
amplifier with only switching noise (no package, p-taps ideally grounded). 

 Figure �5.11 Shows the simulation results for both resistor networks, macro-

model and EPIC. For this example that consists of 44 substrate ports, the difference 

between the noise predicted (peak-to-peak) is 29%. Table �5.4 summarizes the 

results (accuracy versus speed) of the two models. 

 If EPIC is the reference substrate network extractor, it is evident, that the 

error of the macro model is 29%. However, EPIC takes significantly more time to 

extract a substrate resistor network. As a result, the macro-model may be used for a 

fast, approximate prediction of substrate noise coupling during the initial stages of 

design. In these stages, the macro-model accurately predicts the trend of substrate 
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noise coupling and is useful for optimization. The BE-extractor EPIC, on the 

contrary may be used for a final, accurate verification. 
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Figure �5.11 Simulation of the folded cascode amplifier output in unity-gain 
configuration when the stepped buffer is operating at 1MHz. Comparison between 
macro-model and EPIC. All substrate p-taps were grounded (no supply noise). 

Table �5.4 Accuracy versus speed of macro-model and EPIC for the stepped buffer 
and folded cascode amplifier example. There are 44 substrate ports present in this 
example. 

 Macro-Model EPIC 

ERROR (Vpp) 29% - 

Speed 2 seconds 174 seconds 
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6 CONCLUSION AND FUTURE WORK 

Silencer! a new, schematic-driven tool for substrate coupling analysis has been 

described. It has been shown that Silencer! seamlessly fits into a standard mixed-

signal design flow and is integrated into the CADENCE Design Framework II 

environment. The user interface naturally guides the designer by providing 

substrate noise coupling analysis and optimization during the different stages of 

design. Previous research relating to scalable macro-models, 3D-Green’s function 

based substrate parasitic extractors, and package models are included in Silencer! 

It has been shown for two examples, where Silencer! is used to change the 

placement of noisy or sensitive circuits, change the power distribution, and add 

additional noise isolation to have better shielding between noise injecting and 

sensitive circuits. The effect of substrate noise can be simulated accurately, so that 

it is possible to analyze how close a design is to failure and what eventually needs 

to be changed in an effort to solve a particular problem. As a result, it is no longer 

necessary to overdo noise mitigation techniques or waste precious chip area by 

separating circuits far apart from each other. 

6.1 Extending Substrate and Interconnect Models 

The Silencer! substrate models need to be extended to support more 

complex structures, such as triple-wells, buried layers, multiple well depths, and 

trenches. The methodology to extract a macro model from measured and simulated 

sets of test structures should be improved. For example, an optimal substrate 

characterization from process information should be fast and easy in order to 

develop further macro-models for CMOS, BiCMOS, SiGe, and bipolar processes 
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with lightly doped, epitaxial, or SOI bulk. Furthermore, for higher frequencies, 

lateral substrate coupling effects such as sidewalls of wells and resistive effects 

inside wells should be taken into account. In the current version of Silencer! only 

resistive substrate models have been implemented with the assumption that it is 

accurate for up to a few gigahertz. However, for higher frequency applications, 

such as those used in RF designs, this may not be the case anymore. 

Silencer! models the interconnect resistances and inductances, but not the 

capacitances from the interconnects to the substrate. With decreasing feature sizes 

and increased frequencies of operation, the interconnect capacitances to the 

substrate can play a significant role. If fluctuating interconnects are present in the 

layout, designers may have to account for capacitively coupled substrate currents 

due to interconnects. 

6.2 Switching Currents in Large Digital Circuit Blocks 

A methodology of how to simplify large digital blocks and integrating them 

into the Silencer! framework has to be determined. 

Several techniques for modeling currents injected by large digital circuits 

into the substrate have been developed [13]. One method is to simulate the entire 

digital block using a transistor level simulator such as SPICE. Switching currents 

on logic circuit nodes can then be probed and modeled as equivalent current 

sources. By monitoring the power supply current, a time window for the worst-case 

substrate current injection can be determined. Alternatively, an event-driven logic 

simulator can be used to simulate a digital block at the gate level. For a given input 

pattern to the logic circuit, such a simulator can record every transition in the 

circuit. 
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6.3 Pre-Layout Analysis and Post-Layout Verification 

The Silencer! pre-layout analysis approach, such as floor-planning, has to 

be further developed.  A pre-layout and floor-planning approach would be a 

tradeoff between accuracy and being able to simulate many more circuits on a large 

chip. Substrate noise coupling optimization and floor-planning may be started 

before the circuits are even laid out. For floor-planning, it is possible to experiment 

with various block placements. The placement of large noisy digital blocks and 

their effect on sensitive analog blocks and the optimum placement and isolation 

techniques can be identified.  

The post-layout verification stage has not been fully automated yet. It is still 

necessary to either modify the extraction rules or re-label the bulk nodes in the 

netlist to connect the bulk terminals of the transistors to the corresponding terminal 

of the substrate network. Once layout versus schematic (LVS) completely matches, 

the LVS information about net and terminal connections may be used to 

automatically connect the substrate network to the extracted layout. 
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APPENDICES 

APPENDIX A - Silencer! Software Documentation 

The substrate noise coupling analysis tool Silencer! consists of either 

SKILL- or C-functions. SKILL functions are mainly used to communicate with the 

CADENCE DFII database and for the entire graphical user interface (Silencer! 

GUI). These functions can be found in the folder ‘Silencer/Skill’. Computationally 

more expensive algorithms, however, e.g., substrate network extraction and matrix 

operations, have been programmed in C language. They are compiled to an 

executable child-process ‘sncCC.exe’ and will be invoked by the SKILL parent 

process. The communication between the two processes is done through the I/O 

stream. 
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Figure A.1 The Silencer! software flow 

 

 

 First, Silencer! has to know the different types of substrate ports it needs to 

locate in the layout. The ports available for a specific technology are defined in the 

substrate port definition file. Silencer! reads these definitions and then accesses the 

DFII database to search for such objects (layers with certain attributes). Located 

substrate ports (marked with a new layer and a label) will be stored in both, the 

database and the geometric port information file. Second, the parameters have to be 

read and eventually edited in the parameter file. Some substrate ports, e.g., p-taps, 

have to be connected to a specific voltage potential through interconnects. These 

interconnects need to be defined by the user are saved in the interconnects file. 

Third, after a model for the substrate resistor extraction has been chosen, the 
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substrate network can be extracted. In that step, the SKILL parent process evokes a 

C child-process. This process reads the geometric port information (available in 

two different file formats) and calculates the substrate network. It saves the 

network as a netlist in a file (SPECTRE or SPICE format). If the child-process is 

finished, it will send a message to the parent. The parent reads the substrate 

network and eventually back annotates it into the schematic view. Not only the 

substrate network, but also the interconnect network in the interconnects file will be 

back annotated. The schematic is then ready for simulation. 

Appendix A contains a description of all Silencer! functions including 

software flow diagrams that explain some of the function flows in greater detail. 

Furthermore, all Silencer! parameters are listed in table in the same order they are 

stored in the parameter data structure. 

A.1 Software Flow Diagrams 

The following flow charts show how the various functions get invoked 

either during CADENCE startup or the user interface: 

 

sncStartup()Start ICFB
 

Figure A.1.1 CADENCE startup function 

User Interface
Define Chip Boundary…

sncbBoxChip()
AND boxDone()

 

Figure A.1.2 User Interface: Define Chip Boundary… 
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User Interface
Select New Sensor Region… OR

Select New Injector Region...

sncbBoxInjSen()
AND boxDone()

 

Figure A.1.3 User Interface: Select New Sensor/Injector Region… 

User Interface

Add Networks into Schematic...

sncAddOldNW()

sncParamRead()

sncNLRead2()

sncPlaceNWSch()

sncNewSchView()

sncPlaceNWInc()

sncGroundBP()
 

Figure A.1.4 User Interface: Add Networks into Schematic… 
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User Interface

Select Models & Options...

sncModel()

sncModelForm()
sncTapIntercForm()

AND incCount()

sncModelForm_MM()
sncModelForm_EPIC()

AND ena()
 

Figure A.1.5 User Interface: Select Models & Options… 

 

sncParamRead()

sncGetPorts()

User Interface

LOCATE Substrate Ports...

sncLocatePorts()

sncNewLayView()

sncSubcells()

sncWriteGeomData()

sncWriteEPICin()

sncLContacts()

sncReadIniFile()

sncMLPorts()

sncbBoxInsideC()

sncbBoxIntersection()

 

Figure A.1.6 User Interface: LOCATE Substrate Ports… 
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C-Child Process

sncPlaceNWSch()

sncNLRead()

User Interface

CALCULATE Substrate Network...

sncCalculateNetwork()

sncParamRead()

sncNewSchView()

sncPlaceNWInc()

sncGroundBP()
 

Figure A.1.7 User Interface: CALCULATE Substrate Network… 
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A.2 SKILL Functions Overview 

The following Tables lists all Silencer! SKILL files and its functions with a 

brief description: 

Table A.2.1 SKILL Functions in File sncMain.il. 

 

File Function Description 

sncStartup() Initialize SKILL constants and variables, setup 

symbols, and define path- and file names of the 

Silencer! I/O- files. 

sncLocatePorts() Copy layout into a new layout cell view, locate 

substrate ports and mark them with injector/sensor 

layers. If they haven’t been labeled previously, 

label them and store geometric port data in data 

structure and as an ASCII file. 

sncMain.il 

sncCalculateNetwork() Calculate a substrate network from the geometric 

port data using one particular substrate model and 

create a SPICE or SPECTRE netlist. If wished, 

display substrate network, tap interconnects 

network, and/or network for grounding the 

backplane in a new schematic cell view. 
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Table A.2.2 SKILL Functions in File sncGUI.il. 

 

sncModel() Create a 2-D from to choose models & options 

for substrate network calculation. 

sncModelForm() Choose which model form to call. 

sncModelFormMM() Create a 2-D form to view parameters of macro-

models. 

sncModelForm_EPIC() Create a 2-D form to view and edit parameters 

of EPIC. 

ena() Enable or disable menu options in EPIC form. 

sncTapIntercForm() Create a 2-D form to enter p-tap and other 

interconnects. 

incCount() Update interconnect counter and add new values 

in list. 

sncbBInjSen() Select injector and sensor circuits in layout 

view. 

sncbBChip() Define chip boundary in layout view. 

sncGUI.il 

sncInfoDialog() Display an information message on the screen. 
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Table A.2.3 SKILL Functions in File sncPortData.il. 

 

sncSubCells() Flatten sub-cells and merge layers specified in file 

<Silencer.ini>. 

sncNewLayView() Open a new layout cell view with suffix ‘_snc’, 

copy the entire layout into the new cell view, and 

return its ID. 

sncGetPorts() Recognize substrate ports underneath injector 

and/or sensor regions. Recognized ports will be 

marked labeled (if not previously labeled). If no 

injector and/or sensor regions, but contacts are 

present in the layout (i.e. for pre-layout analysis), 

the function recognizes them as such. Names and 

coordinates of ports or contacts will be returned in 

a data structure. 

sncMLPorts() Mark ports, label ports (if not previously labeled), 

and return coordinates and port names. 

sncLContacts() Label contacts (if not previously labeled), and 

return coordinates and contact names. 

sncbBoxInsideC() Return bounding boxes that are either enclosed 

(flag = 0) or not enclosed (flag = 1) in bounding 

box C. 

sncPortData.il 

sncbBoxInterSection() Return interSections of bounding boxes in list A 

with bounding boxes in list B. 
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Table A.2.4 KILL Functions in File sncFiles.il. 

 

sncParamRead() Read parameter file <parameters.txt> and return 

structure with parameters. Flag = 0, all parameters, 

flag = 1, general parameters, flag = 2, macro-

model parameters, flag = 3, EPIC parameters. 

sncParamWrite() Write updated parameters into parameter file 

<parameters.txt>. 

sncWriteGeomData() Write port coordinates, area, and perimeter into 

ASCII file <subsPorts.txt>. 

sncWriteEPICin() Generate EPIC input file <EPICinput.dat>. 

sncNLRead() Read netlist file <SCnetlist.txt> and return a 

structure with resistor names and values. 

sncNLRead2() Read netlist file <SCnetlist.txt> and return a 

structure with resistor names and values 4 same 

as sncNLRead(), but number of ports is unknown. 

sncReadIncFile() Read interconnect file <ptapsItco.txt>. 

sncWriteIncFile() Write interconnect file <ptapsItco.txt>. 

sncFiles.il 

sncReadIniFile() Read file <Silencer.ini>. 
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Table A.2.5 SKILL Functions in File sncPlaceNW.il. 

sncNewSchView() Open a new schematic cell view, copy circuit 

schematic into the new cell view, and return its 

ID. 

sncPlaceNWSch() Place substrate network in schematic view. 

sncGroundBP() Ground backplane if option was enabled. 

sncPlaceNWInc() Place interconnect network in schematic view, if 

any were defined. 

sncPlaceNW.il 

sncAddOldNW() Add previously generated substrate network and 

interconnect network into schematic view 

without recalculating the substrate network. 
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A.3 SKILL Functions Description 

The following paragraphs describe the most important Silencer! SKILL 

functions in greater detail and include some Jackson flow diagrams: 

A.3.1 sncMain.il 

The SKILL file sncMain.il contains three Silencer! main functions: 

sncStartup(), sncLocatePorts(), and sncCalculateNW().  

The function sncStartup() will automatically be called during CADENCE 

startup. Its purpose is not only to initialize constants and variables, but also to set 

up symbols and define path- and file names of the Silencer! I/O- files. All symbols 

used in the program, such as resistors, inductors, ground symbols, and pins, are 

either taken from the analog or basic library. sncStartup() has to be invoked from 

the .cdsinit.user file. 

The function sncLocatePorts() will be called after selecting the menu option 

‘SILENCER!/LOCATE Substrate Ports…’. It locates substrate ports in a layout 

(substrate ports are physical locations in the layout where noise could be coupled 

into the substrate or sensed from the substrate, such as transistors, substrate taps, 

and wells), marks them with either an injector or sensor layer and eventually labels 

them automatically. However, in some cases, it may be more convenient to label 

some ports manually before locating the substrate ports. In such a case, the function 

will recognize a label and use its name as a substrate port name. The entire layout 

including the located substrate ports will be copied into a new cell view with suffix 

‘_snc’. After localizing the substrate ports, the function stores the geometric port 

data extracted from the layout (coordinates, port names) in both, a data structure 

and the file ‘subsPorts.txt’. Moreover, an EPIC input file ‘EPICinput.dat’ will be 
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created. If no error occurred while locating the substrate ports, the function will 

display the following message: ‘New port files <subsPorts.txt> and 

<EPICinput.dat> have been generated!’. 

Begin sncLocatePorts( )

Get ID, Bounding Box, and Name of Layout Cellview

if Cellview Doesn't End with '_snc'

then

Call Function: sncNewLayView( )
Open a New Layout Cellview with Suffix '_snc' and Copy Layout into it.

Call Function: sncSubCells( )
Flatten Subcells (e.g. p-Cells) and Merge Layers Specified in File 'Silencer.ini'

Call Function: sncGetPort( )
Recognize and Label Substrate Ports or Contacts.

if Ports or Contacts Were Found

then

Call Function: sncParamRead( )
Read General Silencer! Parameters and EPIC Model Parameters into Data Structure

Call Function: sncWriteGeomData( )
Write Port Coordinates, Area, and Perimeter into ASCII File

Call Function: sncWriteEPICin( )
Generate EPIC Input File

else

Display a Message

else

Display a Message

End sncLocatePorts( )

Silencer! Function 'sncLocatePorts' (skill)

 

Figure A.3.1.1 Jackson flow diagram of the function sncLocatePorts(). 
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The function sncCalculateNW() calculates a substrate network from the 

geometric port data. If any substrate ports are present in the layout, it will be 

invoked by choosing the menu option ‘SILENCER!/CALCULATE Substrate 

Network…’. After a substrate network was calculated using one particular substrate 

model, the function will create a netlist in a SPICE or SPECTRE format and save it 

in the file ‘SCnetlist.txt’. Silencer! allows to display the substrate network in the 

schematic view, to include a network for the substrate tap interconnects, and/or 

ground the backplane. If the option ‘Display Substrate and Interconnect Network in 

Schematic…’ has been enabled, the function will display the networks 

automatically in a new schematic view with suffix ‘_snc’. 
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Begin sncCalculateNetwork( )

Calculate Number of Substrate Ports

if More than One Substrate Port Present in Layout

then

Call Function: sncParamRead( )
Read General Silencer! Parameters into Data Structure

Start C-Child-Process to Calculate a Substrate Network

while Child Process (c-Program) Is Running...

Wait for a Message from Child

if Message from Child is "OK"

then

Call function: sncNLRead( )
Child Process Generated a SPICE/SPECTRE Netlist, Read Netlist into Data Structure

if "Display Substrate and Interconnect Network in Schematic..."
is Enabled in "Models & Options" Form

then

Call Function: sncNewSchView( )
Open a New Schematic View with Suffix '_snc' and Copy Schematic

Call Function: sncPlaceNWSch( )
Place Substrate Network in Schematic View

Call function: sncPlaceNWInc( )
Place Interconnect Network in Schematic View, if Interconnects Were Defined

Call function: sncGroundBP( )
Ground Backplane if this Option Has Been Enabled

else

Display a Message

else

Display a Message

else

Display a Message

End sncCalculateNetwork( )

Silencer! Function 'sncCalculateNetwork' (skill)

 

Figure A.3.1.2 Jackson flow diagram of the function sncCalculateNW(). 
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A.3.2 sncPorts.il 

The SKILL file sncPorts.il contains the following Silencer! functions to 

identify substrate ports and contacts: sncSubCells(), sncNewLayView(), 

sncGetPorts(), sncMLPorts(), sncLContacts(), sncbBoxInsideC(), 

sncbBoxInterSection(), and sncbBoxChip(). 

The function sncSubCells() flattens all sub-cells (e.g. p-cells) and sub-

hierarchies of the duplicated layout view with suffix ‘_snc’. In addition, layers 

specified in the file <Silencer.ini> will be merged. The function sncSubCells() will 

be invoked by function sncLocatePorts(). 

The function sncNewLayView() opens a new layout cell view with suffix 

‘_snc’, copies the entire layout into the new cell view, and returns its ID. It will be 

called from sncLocatePorts(). 

The function sncGetPorts() detects if there are injector/sensor contacts or 

regions present in the schematic. Contacts can be used for pre-layout analysis or 

validating a substrate model. Injector and/or sensor regions will be used to simulate 

entire circuits and substrate ports underneath an injector/sensor region layer will 

automatically be recognized, marked, and labeled. However, it is possible to 

manually label some substrate ports by putting an injector/sensor label inside the 

port. In such a case, the function will recognize a label and use its name as a 

substrate port name. The kinds of substrate ports to be detected are specified in the 

file <Silencer.ini>. Consequently, any substrate ports of interest for any specific 

technology can be programmed. As an example: A particular substrate port, let’s 

call it port_type1 would be recognized in the layout whenever layer1 overlaps with 

layer2, but is not surrounded by layer3. All substrate ports that were detected will 

be stored with name and coordinates in a data structure. The data structure will be 
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returned as a function value. The function sncGetPorts() is invoked by 

sncLocatePorts(). 

Begin sncGetPorts( )

Define and Clear Data Structure for Port Names and Coordinates

Get Chip Bounding Box

Set Substrate Port Counter x_portCount = 0

case Bounding Box

of No Bounding Box Found

Draw a Chip Boundary (SC_Chip-layer) around the Cellview Bounding Box and Return Coordinates

of One Bounding Box Found

Return Coordinates

otherwise

... There Can only Be One Bounding Box to Define the Chip Boundary
ERROR Message, Aboard Function

Find Noise Injector/Sensor REGIONS (Marked with Injector/Sensor Selection Layer, Round Corners) and Save them in a List

if Neither any Noise Injector nor Sensor REGIONS Were Found

then

Find Noise Injector/Sensor Contacts

if Neither any Noise Injector nor Sensor Contacts Were Found

then

ERROR Message, Aboard Function

else

Call Function: sncLContacts( )
Label Contacts and Return Coordinates in Structure

else

Call Function: sncReadIniFile( )
Read Substrate Port Definition Layers from File <Silencer.ini> and Save them in Data Structure

Get Name for p-taps (Will Be Used to Define Interconnects) 

Define a Data Structure for Substrate Port Definition Layers

repeat repeat Get Bounding Boxes of All Layer1, Layer2, and Layer3 Contacts underneath Current Injector REGION 

Call Function: sncbBoxIntersection( )
Return All Areas (List of Bounding Boxes) where Layer1 Overlaps with Layer2

Call Function: sncbBoxInsideC( )
Returns All Bounding Boxes (of Layer1 Overlap with Layer2) that Are Outside the
Bounding Boxes of Layer3

Call Function: sncMLPorts( )
Mark and Label Ports and Return Coordinates in Structure

Increment x_portCount by Number of Newly Detected Ports

until Each Substrate Type Checked

Remove Current Noise Injector REGION Layer

until All Noise Injector REGIONS Checked

repeat repeat Get Bounding Boxes of All Layer1, Layer2, and Layer3 Contacts underneath Current Sensor REGION 

Call Function: sncbBoxIntersection( )
Return All Areas (List of Bounding Boxes) where Layer1 Overlaps with Layer2

Call Function: sncbBoxInsideC( )
Returns All Bounding Boxes (of Layer1 Overlap with Layer2) that Are Outside the
Bounding Boxes of Layer3

Call Function: sncMLPorts( )
Mark and Label Ports and Return Coordinates in Structure

Increment x_portCount by Number of Newly Detected Ports

until Each Substrate Type Checked

Remove Current Noise Sensor REGION Layer

until All Noise Sensor REGIONS Checked

Return Data Structure with Port Names and Coordinates

End sncGetPorts( )

Silencer! Function 'sncGetPorts' (skill)

 

Figure A.3.2.1 Jackson flow diagram of the function sncLocatePorts(). 
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A.3.3 sncLocatePorts.il 

The function sncMLPorts() will be called from function sncGetPorts() for 

each substrate injector/sensor region and each substrate port type. It checks for each 

port, if there is already a label inside. If so, it will use that label as a port name, 

otherwise, it will create a new name. Such a new name always consists of the 

substrate port type plus a number. Labels will be placed at the left hand side, 

outside the port. In the layout, the ports will be marked with a sensor or injector 

layer (depending on whether the circuit is a noise injector or sensor. Finally names 

and coordinates of the ports will be returned in a data structure. 

Begin sncMLPorts( )

repeat Get Coordinates (llx, lly, urx, ury) of Current Port

Add Coordinates of Current Port to Data Structure

Search for Injector or Sensor Label inside Current Port

if Label inside Port

then

Add Label Name to Data Structure

else

Define Label Size, Justification, and Orientation of Current Port

Define Label Name (= Name of Port Type Plus Label Counter Value)

Add Label Name to Data Structure

if Current Port Type is p-tap

then

Add Port Name in p-tap List

else

%

Return Updated Data Structure

until Each Substrate Port Marked and Labelled

End sncMLPorts( )

Silencer! Function 'sncMLPorts' (skill)

 

Figure A.3.3.1 Jackson flow diagram of the function sncMLPorts(). 
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The function sncLContacts() is very similar to function sncMLPorts() and 

will also be invoked by function sncGetPorts(). It checks for each contact, if there 

is already a label inside. If so, it will use that label as a contact name, otherwise, it 

will create a new name. A new name will be ‘cont_’ and a number. Labels will be 

placed at the left hand side, outside the contact and contact names and coordinates 

will be returned in a data structure. 

The function sncbBoxInsideC() goes through a list of bounding boxes, lets 

call them bounding boxes C. It will check if any bounding box of another list of 

bounding boxes is inside (or not inside) the bounding boxes C. It will return a list 

of bounding boxes that are inside (or not inside) the bounding boxes C. This 

function will be called from function sncGetPorts(). 

The function sncbBoxInterSection() finds in two lists (let’s call them A and 

B) any bounding box in A that intersects with another bounding box in B. It will 

return a list with all the interSection bounding boxes. This function will be called 

from function sncGetPorts(). 

A.3.4 sncFiles.il 

The SKILL file sncFiles.il contains the following Silencer! functions used 

for file handling: sncParamRead(), sncParamWrite(), sncWriteGeomData(), 

sncWriteEPICin(), sncNLRead(), sncNLRead2(), sncReadIncFile(), 

sncWriteIncFile(), and sncReadIniFile(). 

The functions sncParamRead() and sncParamWrite() are used to read the 

Silencer! parameters from a file into a data structure or to write parameters into a 

file - the parameter file is called <parameters.txt>. The parameters are grouped in 

general Silencer! parameters, macro-model parameters, and EPIC parameters. By 

using flag = 0, all parameters are read, flag = 1, general parameters are read, flag = 

2, macro-model parameters are read, and flag = 3, EPIC parameters are read. 

sncParamRead() is called from the functions sncLocatePorts(), 
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sncCalculateNetwork(), and sncModel(). sncParamWrite() is only invoked by the 

function sncModel() and always all parameters are written into the file. The first 

few lines of the parameter file tell when the parameters have been changed the last 

time and by whom. 

The functions sncWriteGeomData() and sncWriteEPICin() write the 

geometric information about the substrate ports into an ASCII file format. The files 

created are <subsPorts.txt> and <EPICinput.txt>. They will be used by the macro-

models and EPIC to calculate the substrate network. The functions will be called 

from the function sncLocatePorts(). 

The functions sncNLRead() and sncNLRead2() are used to read the 

substrate network (SPICE or SPECTRE netlist) into a data structure. Saved will be 

resistor name, terminal1, terminal2, and resistor value. They will be called from the 

functions sncCalculateNetwork() and sncAddOldNW(). 

The functions sncReadIncFile() and sncWriteIncFile() are used to read the 

Silencer! p-tap interconnects from a file into a data structure or to generate a new 

interconnects file. The tap-interconnect file is called <ptapsItco.txt>. The functions 

sncReadIncFile() and sncWriteIncFile() are invoked by the functions 

sncPlaceNWInc() and sncTapIntercForm().  

The function sncReadIniFile() reads definitions from the file <Silencer.ini>. 

This can be definitions of substrate ports or layers in subcells that have to be 

merged. It is called from the functions sncGetPorts() and sncSubCells(). 

A.3.5 sncPlaceNW.il 

The SKILL file sncPlaceNW.il contains Silencer! functions used to display 

the substrate and interconnect network in the circuit schematic. These functions are: 

sncNewSchView(), sncPlaceNWSch(), sncGroundBP(), sncPlaceNWInc(), and 

sncAddOldNW(). 
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The function sncNewSchView() creates a new schematic view with suffix 

‘_snc’ and copies the circuit schematic into the new view. If such a schematic 

already exists, it will be overwritten. The old schematic will be closed, if it was 

open. The function is called from the function sncCalculateNetwork() and returns 

the new ID of the schematic. 

The function sncPlaceNWSch() places the substrate network at the right 

hand side of the schematic, labeles the terminals, and adds pins. It is called from 

the functions sncCalculateNetwork() and sncAddOldNW(). 

The function sncGroundBP() will be invoked by the function 

sncCalculateNetwork() if the backplane needs to be grounded. The function 

displays a series R-L circuit connected from the backplane to ground in the 

schematic. 

The function sncPlaceNWInc() will be invoked by the function 

sncCalculateNetwork() if any p-tap interconnect network has been defined. The 

function displays R-L series circuits connected from one p-tap to another p-tap or 

to ground in the schematic. 

The function sncAddOldNW() will be called after selecting the menu option 

‘SILENCER!/Add Networks into Schematic…’. It reads the parameter file 

<parameters.txt> and the netlist file <SCnetlist.txt>. If a netlist is present, it opens a 

new schematic cell view with suffix ‘_snc’ and copies the old schematic into that 

new cell view. Finally, it connects both, substrate and interconnect network to the 

schematic view. 

A.3.6 sncGUI.il 

The SKILL file sncGUI.il contains the graphical user inerface functions of 

Silencer! such as sncModel(), sncModelForm(), sncModelFormMM(), 

sncModelForm_EPIC(), ena(), sncTapIntercForm(), sncbBInjSen(), sncbBChip(), 

and sncInfoDialog(). 
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The functions sncModel(), sncModelForm(), sncModelFormMM(), 

sncModelForm_EPIC(), and ena() display the Models & Options forms for the 

general Silencer! options, and the EPIC parameters. They are invoked by the menu 

option ‘SILENCER!/Model & Options…’. Any changes in these forms will be 

saved in the file <parameters.txt>. 

The function sncTapIntercForm() will be called after pressing the button 

‘Tap Interconnects…’ in the ‘Models & Options’ form. A form will be displayed in 

which p-tap interconnects can be defined as an R-L series circuit. Interconnects will 

be saved in the file < ptapsItco.txt >. 

The functions sncbBInjSen(), sncbBChip() are used to draw injector/sensor 

regions and a chip boundary, respectively. They will be called by selecting the 

corresponding menu items. 

The function sncInfoDialog() displays a dialog window with information 

about Silencer! Dialogs are used to guide the user in the substrate coupling analysis 

flow. 
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A.4 C Child-Process 

The following table lists the Silencer! C child-process functions, not 

including EPIC. The software flow of the child-process is described in the Jackson 

diagram. 

Table A.4.1 Silencer! C child-process functions. 

modelPar() Read model parameters from file <t_paraFile> gFile_r.c 

z_matrixMM() Get z-matrix from port data for either macro-model1 or 

macro-model2 

matrixInv.c matrixInv() Code taken from Chenggang Xu to calculate y-matrix from 

z-matrix 

rNWcalc() Calculate r-matrix from y-matrix 

rWrite() Write substrate network in either SPECTRE or SPICE 

format into file <t_netlFile> 

rCalc.c 

getPortNames() Get names of substrate ports from port data file 

<t_portFile> 
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Begin main.c

Get the Following Data from SKILL Parent Process:
(1) Number of Substrate Ports, (2) Path/File Name of SPICE/SPECTRE Netlist,
EPIC File, Parameter File, and Port Data File

Open Parameter File

Call Function: modelPar( )
Read Parameter File <t_paraFile> and Return Parameters in Data Structures

Close Parameter File

Open Port Data File

if Macro-model1 or Macro-model2 Is Used to Calculate the Substrate Network...

then

Call Function: z_matrixMM( )
Calculate z-Matrix from Port Data for Macro-model1 or Macro-model2

Call Function: matrixInv( )
Calculate y-Matrix by Inverting z-Matrix

Call Function: rNWcalc( )
Calculate r-Matrix from y-Matrix

else

Call Function: getPortNames( )
Read Port Data File and Store Port Names in Structure

Allocate Memory for a 2D-Matrix to Interface EPIC

Call Function: EPICfcn( )
Calculate Resistor Matrix Using EPIC BE-Method

Copy Resistor Matrix Created by EPIC into r-Matrix

Free Memory of 2D-matrix

Close Port Data File

Create File to Store SPICE/SPECTRE Netlist and Open it for Writing

Call Function: rWrite( )
Write r-matrix into a SPICE/SPECTRE Netlist

Close Netlist File

End main.c

Silencer! C-Child Process 'main.c' (c-code)

 

Figure A.4.1 Jackson flow diagram of the function main.c. 
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Begin modelPar( )
(Return: Model-Type, Netlist-Type, Max. Allowed Resistor Value, and Model Parameters)

Read Model-Type from Parameter File...
0: Macro-model1
1: Macro-model2
2: EPIC

Read Netlist-Type from Parameter File...
0: SPICE
1: SPECTRE

if Model-Type = Macro-model

then

Read Macro-model Parameters from Parameter File

else

Model-Type is EPIC...
Read EPIC Parameters from Parameter File

End modelPar( )

Silencer! C-Child Process Function 'modelPar()' (c-code)

 

Figure A.4.2 Jackson flow diagram of the function modelPar(). 

Begin z_matrixMM( )
(Return: Pointer to z-Matrix Filled with Values, Array with Substrate Port Names)

Read Port Data File <t_portFile> and Calculate the Following:
Contact Size
Contact Center-Point
Contact Area
Contact Perimeter

... and If Macro-Model2 Is Current Model

Contact Diagonal
Contact Perimeter to Area Ratio

Calculate Diagonal Elements of z-Matrix
(See Formula in Model Description)

Calculate Off-Diagonal Elements of z-Matrix According to the Definitions of the
Corresponding Macro-Model (See Details in Model-Description)

End z_matrixMM( )

Silencer! C-Child Process Function 'z_matrixMM( )' (c-code)

 

Figure A.4.3 Jackson flow diagram of the function z_matrixMM.c. 
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A.5 Silencer! Model Parameters 

The following table describes the Silencer! model parameters and how they are 

organized inside the data structure ‘a_param’. They are grouped in three sets of 

parameters: general Silencer! parameters, macro-model parameters, and EPIC 

parameters. 

Table A.5.1 Silencer! model parameters and their organization within the data 
structure. 

Array Location Parameter Name Description 
a_param[0] a_para_general General parameters 

a_param[1] a_para_MM Macro-model parameters 

a_param[2] a_para_EPIC EPIC parameters 

Array Location Parameter Name Description 
a_para_general[0] modelType (v) 

a_para_general[1] modelType (d) 

Model type value and default value, 

0: Macro-model1, 1: Macro-model2, 2: EPIC 

a_para_general[2] networkType (v) 

a_para_general[3] networkType (d) 

Network type value and default value, 

0: SPICE, 1: SPECTRE 

a_para_general[4] simView (v) 

a_para_general[5] simView (d) 

Simulation from 0: layout view, 1: extracted 

view 

a_para_general[6] maxRes Discard large resistors in network 

a_para_general[7] maxResVal Max. resistor value in network 

a_para_general[8] bpGnd 0: floating backplane, 1: grounded backplane 

a_para_general[9] bpR 

a_para_general[10] bpL 

R, L series circuit for grounding backplane 

a_para_general[11] flattenCV Flatten all hierarchies of subcells 

a_para_general[12] inSchem Place network in schematic 
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Array Location Parameter Name Description 
a_para_EPIC[0] numOfLay Number of layers in substrate 

a_para_EPIC[1] DCT Discrete-Fourier-Transform size 

a_para_EPIC[2] contS Contact size 

a_para_EPIC[3] blk1 Bulk layer resistivity 

a_para_EPIC[4] blk2 Bulk layer thickness 

a_para_EPIC[5] epi1 Epi layer resistivity 

a_para_EPIC[6] epi2 Epi layer thickness 

a_para_EPIC[7] chStp1 Channel stop resistivity 

a_para_EPIC[8] chStp2 Channel stop thickness 

a_para_EPIC[9] method Simulation method, 0: direct, 1: iterative 

a_para_EPIC[10] methodTol Tolerance for iterative method 

a_para_EPIC[11] maxDiv Max. division of contact 
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A.6 Accessing the DFII Database 

All Cadence tools use the Design Framework II unified database; a binary 

database that stores data as objects. There are many types of objects, each 

representing a distinct concept in the world of electronic design automation. 

Examples of object types include rectangles, terminals, instances, and cell views. 

The Design Framework II database can store both physical and logical information 

about a design. Physical information is stored in objects such as geometrical shapes 

and an IC layout. Logical information is stored in objects such as nets or 

schematics, which can exist without any corresponding physical realizations. 

To access an object in the database, a label known as the object identifier or 

ID has to be used. Each ID uniquely identifies a database object and is represented 

by the special type dbObject. Only database routines can create IDs, consequently 

the user cannot alter IDs directly. When a function that operates on a database 

object is used, the ID as an argument to the function has to be given as well. 

In programming terms, a variable of dbObject type represents the ID of an 

object in the database. If the database object identified by a dbObject variable is 

deleted, that dbObject variable is invalid and cannot be used to do any database 

operation. 

Each object is associated with a type, and each object type has a set of 

attributes that describe the object. An object class is a data-type abstraction that 

groups related object types into a class. Object classes are created when a number 

of distinct object types share enough attributes that they can be discussed as a 

single class, without being concerned about the exact object type. The different 

types and classes of objects form a class hierarchy. At the top of the hierarchy is a 

class containing all types. At the bottom of the hierarchy, each leaf node represents 

an object type that can be created, deleted, and saved on disk. Each node in the 
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hierarchy has attributes that are common to all of its children. Geometrical shapes, 

for example, have the common attributes of layer, purpose, and bounding box. 
Each object type has a predefined set of attributes that you can retrieve using type 

specific access functions. There are three types of attributes: mandatory, optional, 

and derived attributes. 
Mandatory attributes must be specified at the time an object is created. Most 

attributes fall into this category. Optional attributes may or may not exist for a 

particular object. These attributes do not need to be specified at the time an object 

is created, they can be added to the object at any time. Derived attributes are 

derived from the object’s other attributes. Only read-only access exists to derived 

attributes and they cannot be stored in the database. However they play an 

important role in speeding up repetitive computation. 

An object property has a name and a value, such as a Boolean value, an 

integer, a floating point number, a string, or a representation of time (see Appendix 

A.7). An arbitrary number of properties can be attached to an object used to store 

different kinds of information such as mechanisms for extending the basic schema 

of the database.  

The most important distinction between attributes and properties is that 

attributes are predefined and managed by the database, while properties are defined 

and managed by applications built on top of the database. This distinction is often 

blurred because some information currently stored as properties is also essential to 

the system’s operation. Properties are not mandatory as far as the database is 

concerned; however, some properties are essential to the operation of certain 

applications (for example, net listing, place and route, etc). Within these 

applications, such properties can be considered mandatory. 

The database access operator -> works on both attributes and properties 

associated with a given database object. Because the name of an attribute or a 

property can be specified on the right-hand side of the operator, attributes and 

properties share a single name space. For this reason, in earlier documentation 
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attributes and properties were lumped together and referred to as properties. For the 

~> operator, attributes always have precedence over properties, which means that 

one cannot access a property that has the same name as an attribute using the ~> 

operator. 

The CADENCE database stores many predefined relationships among 

different types of objects. Some relationships are automatically kept by the 

database, while other inter-object relationships must be explicitly created and 

maintained by applications. Some relationships in the database are mandatory, for 

example, each terminal must be attached to a net. Application programs cannot, 

therefore, create a terminal without specifying the net it connects to. Mandatory 

relationships are very often unidirectional. For example, it is acceptable to have a 

net that does not connect to a terminal. Some relationships in the database are 

optional. Objects can be created independently now with a relationship created later 

by an application. When a predefined relationship is one-to-one or many-to-one, 

there is an access function (in the form of a pseudo-attribute) to go from the source 

object to the object it relates to. When a predefined relationship is a one-to-many 

relationship, there is an access function (in the form of a pseudo-attribute) that 

returns a list of the objects contained in the relationship. 

Before the database can be accessed, the ‘cds.lib’ file has to be set up so the 

database can locate the cells in the design. Then various cell views in the design in 

different libraries located in directories listed in the cds.lib file can be opened. 

When a cell view is open, other database functions can be used to examine and 

modify the contents of the cell view. 
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A.7 Terminology of Newly Defined SKILL Functions 

 The SKILL functions of CADENCE tool typically use prefixes in front of 

the function names that identify for which tool the function has been developed. 

For example, all Layout Editor functions have the prefix ‘le’, or the Schematic 

Composer functions have the prefix ‘sc’, etc. Consequently, it makes sense to 

continue with that terminology and all Silencer! functions have a prefix ‘snc’, 

which stands for substrate noise coupling. Furthermore, the data type of symbols 

(variables) used in the Silencer! SKILL code can be recognized by the Single 

Character Mnemonic in the symbol name. 

Table A.7.1 Data types supported by SKILL and used in the Silencer! functions: 

Data Type Internal 

Name 

Single 

Character 

Mnemonic 

Data Type Internal 

Name 

Single 

Character 

Mnemonic 

Array array a Defstruct  r 

Database object dbobject d Symbol symbol s 

Floating-point 

number 

flonum f Symbol or cha-

racter string 

 S 

Any data type general g Character string 

(text) 

string t 

Linked list list l Function object  u 

Integer or floating-

point number 

 n Window type  w 

User-defined type  o Integer number fixnum x 

I/O port port p Binary function  y 



 

 

104 

APPENDIX B - Installing Silencer! 

B.1 Installing Silencer! for the TSMC 0.35µm Heavily Doped Process 

Before Silencer! can be installed, the process has to be installed. The 

following Section describes first, how to set up the TSMC 0.35µm heavily doped 

process in the CADENCE DFII environment. Second, it describes the Silencer! 

installation process. 

First, a new folder for the project directory has to be created. For example, 

‘~/cadence/SC_Tool’ was chosen as the new project directory. Once the directory 

has been created, the path has to be changed to access that directory, e.g., >cd 

SC_Tool in Unix. The command ‘~cdsmgr/process/tsmc0.35.3/setup’ will set up a 

new TSMC 0.35µm heavily doped process and the path ‘~/cadence/SC_Tool’. That 

path will become the new CADENCE startup directory for that process. If no 

automatic setup for the technology is provided, the required files have to be copied 

into the directory manually. 
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Figure B.1.1 The files created in the CADENCE startup directory for the TSMC 
0.35µm heavily doped process. 

 Once the setup new of the process is done, Silencer! can be installed. This 

can be done simply by copying the folder ‘Silencer’ into the startup directory. The 

folder contains totally three directories and six files. 

 

 

Figure B.1.2 The folder ‘Silencer’ contains three directories and six files. 
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The folder ‘Files’ is empty and will be used by Silencer! during the process 

of localizing substrate ports and extracting the substrate network to save the created 

output files. 

 

 

Figure B.1.3 The folder ‘Files’ is used during the process of localizing substrate 
ports and extracting the substrate network to save the created output files. 

 

Figure B.1.4 The folder ‘Skill’ contains all the SKILL functions used by the tool, as 
shown in the following figure. 

 Further information about the SKILL functions and SKILL programming 

in general can be found in Appendix A. In addition, the folder ‘menus’ contains the 

file ‘layEdit.menu’ in which the CADENCE and Silencer! menus and menu items 

are defined. The file cmosp35_SC.tf contains the modified technology file for the 
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TSMC 0.35µm process. Three more layers were previously added to the technology 

file, which are ‘SC_Inj’, ‘SC_Sen’, and ‘SC_Chip’. Moreover, the file ‘display.drf’ 

contains the colors and patterns of these three layers. For any new process, these 

three layers have to be added. Further information about adding layers to a 

technology file and define patterns and colors can be found in Appendix B.1. The 

parameter file ‘parameters.txt’ contains all Silencer! parameters 

 
// Last update of ~/cadence/SC_Tool/Silencer/parameters.txt on Dec  8 15:43:31 2003 by 

birrer 

// Model type (Macro-model1, Macro-model2, EPIC) 
modelType= 
     EPIC     Macro-model2 
// Network type (SPECTRE, SPICE) 
networkType= 
     SPICE     SPICE 
// Simulation (Layout-view, Extracted-view) 
simView= 
     Layout-view Layout-view 
// Max. resistor in network discarded (t, nil), resistor values 
maxRes= 
     t     500000 
// Grounded backplane (t, nil), R, L values 
bpGnd= 
     nil     0.2     1.5e-08 
// Include extracted LVS information (t, nil) 
flattenCV= 
     nil 
// Place network in schematic (t, nil) 
inSchem= 
     nil 
endGeneral 
 
// Parameters for macro-models 
// Zii = a1, a2, a3 
// Zij macro-model1 = b 
// Zij macro-model2 < 12um = m1_A, m1_B, m1_C, m2_A, m2_B, m2_C, m3_A, m3_B, m3_C 
// Zij macro-model2 = m4_A, m4_B, m5_A, m5_B, m5_C 
// Zij macro-model2 > 12um = m1_Al, m1_Bl, m1_Cl, m2_Al, m2_Bl, m2_Cl, m3_Al, m3_Bl, m3_Cl 
param_MM= 
 3.201e+06   67.862   0.0004099  
 154000 
 758.521 17996.9 4.46326e+10 0.249083 -0.00579473 0.00161499 -0.0100331 -5.02842e-07
 52039.9 
 -0.0210468 4605.18 -0.057346 0.00625791 -6.6367e-09 
 343.591 8339.21 1.15093e+10 0.119094 -0.000151257 1.85493e-06 -0.0603908 -4.54979e-07
 31087.2 
endMM 
 
// Parameters for EPIC for 2 or 3 layer substrate 
// numOfLay, DCT, contS 
// layer1_res, layer1_th, layer2_res, layer2_th, layer3_res, layer3_th 
// method, methTol 
param_EPIC= 
     3   4096   0.5 
     0.0230956   194.598   4.12237    4.637   0.187458   0.765272 
     1   1e-08   6 
endEPIC 

Figure B.1.5 Parameter file for the TSMC 0.35µm process. 
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The parameters are grouped in three sets: general Silencer! parameters, 

macro-model parameters, and EPIC parameters. The first line shows time, date, and 

username of the last update of the file. These parameters are stored in a data 

structure during Silencer! runtime. The data structure is described in Appendix A.5. 

The file ‘sncCC.exe’ is the compiled, executable child-process that will be 

called from the SKILL parent process to extract a substrate network. The file 

‘Silencer.ini’ contains the definitions of the substrate ports for the technology that 

Silencer! is being installed for, in this example for the TSMC 0.35µm process. 

Furthermore, the layers may have to be merged to get the correct substrate ports. 

More information about how to set up the technology file can be found in 

Appendix B.2. The file ‘readme.txt’ contains a brief description how to install 

Silencer! Further, it contains the paths to the different SKILL functions that have to 

be included in the file ‘.cds.ini’ or ‘.cds.ini.user’. 

 
loadi "Silencer/Skill/sncMain.il" 
loadi "Silencer/Skill/sncPortData.il" 
loadi "Silencer/Skill/sncMessage.il" 
loadi "Silencer/Skill/sncModels.il" 
loadi "Silencer/Skill/sncFiles.il" 
loadi "Silencer/Skill/sncPlaceNW.il" 
sncStartup() 

Figure B.1.6 Paths to access the Silencer! SKILL functions. 

 After the ‘Silencer’ folder has been copied into the startup directory of the 

newly setup TSMC 0.35µm process and the paths added in the ‘.cds.ini’ or 

‘.cds.ini.user’ file, CADENCE can be started from the startup directory by typing 

>icfb in the command line. After creating a new library and layout cell view, not 

only the three layers defined for Silencer!, but also the menus and menu items to 

run Silencer! will appear in the layout editor. 
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B.2 Adding the Noise-Injector and Noise_Sensor Layers 

In Appendix B.2, there was a description of how Silencer! has to be 

installed for the TSMC 0.35µm process. For that particular process, the three new 

layers used by Silencer! have already been included in both, the technology file and 

the display.drf file. However, for a completely new process, these three layers have 

to be added first. 

The three layers will be used not only to define the substrate ports (locations 

where noise gets injected to the substrate and where noise will be picked up 

through the substrate), but also a layer to define the chip boundary (used by the BE 

substrate network extractor). The layers have to be named ‘SC_ Inj’, ‘SC_Sen’, and 

‘SC_ Chip’.  

In order to add layers into the CADENCE environment, one have to make 

the following changes in the technology file. First, the technology file ‘cmosp35.tf’ 

has to be copied from the folder ‘cmosp35’ into the startup directory (where the 

process has been set up). For the TSMC 0.35µm process example, the startup 

directory would is ‘~/cadence/SC_Tool’. Second, once the file has been copied, it 

has to be renamed, e.g., ‘cmosp35_SC.tf’. Finally, the new technology file needs to 

be edited. 
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;******************************** 

; LAYER DEFINITION 

;******************************** 

layerDefinitions( 

 

techPurposes( 

 ;( PurposeName               Purpose#   Abbreviation ) 

 ;( -----------               --------   ------------ ) 

 ;User-Defined Purposes: 

 ;System-Reserved Purposes: 

  ( warning                   234        wng          ) 

  ( tool1                     235        tl1          ) 

  ( tool0                     236        tl0          ) 

  ( label                     237        lbl          ) 

  ( flight                    238        flt          ) 

 . 

 . 

 . 

techLayers( 

 ;( LayerName                 Layer#     Abbreviation ) 

 ;( ---------                 ------     ------------ ) 

 ;User-Defined Layers: 

  ( nwell                     1          nwell        ) 

  ( active                    3          active       ) 

  ( poly1                     5          poly1        ) 

 . 

 . 

 . 

  ( drcex                     88         drcex        ) 

  ( pkg                       90         pkg          ) 

 ;Substrate port layers for substrate coupling analysis 

  ( SC_Inj                    91         SC_Inj       ) 

  ( SC_Sen                    92         SC_Sen       ) 

  ( SC_Chip                   93         SC_Chip      ) 

 

 ;System-Reserved Layers: 

  ( Unrouted                  200        Unroute      ) 

  ( Row                       201        Row          ) 

  ( Group                     202        Group        ) 

. 

 . 

 . 

techLayerPurposePriorities( 

 ;layers are ordered from lowest to highest priority 

 ;( LayerName                 Purpose    ) 

 ;( ---------                 -------    ) 

  ( background                drawing    ) 

  ( nwell                     drawing    ) 

  ( nwell                     net        ) 
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  ( nwellres                  drawing    ) 

  ( nwellres                  net        ) 

  ( active                    drawing    ) 

  ( poly1                     drawing    ) 

. 

 . 

 . 

  ( m4res                     drawing    ) ;MOSIS add 

  ( m4res                     net        ) ;MOSIS add 

  ( SC_Inj                    drawing    ) ;Added substrate ports 

  ( SC_Sen                    drawing    ) ;Added substrate ports 

  ( SC_Chip                   drawing    ) ;Added substrate ports 

  ( specres                   drawing    ) 

  ( tight                     drawing    ) 

. 

 . 

 . 

techDisplays( 

. 

 . 

 . 

  ( m4res        drawing      met4R            t t t t t )   ;MOSIS add 

  ( m4res        net          m4resNet         t t t t nil ) ;MOSIS add 

  ( SC_Inj       drawing      SC_Inj           t t t t t )   ;Added substrate ports 

  ( SC_Sen       drawing      SC_Sen           t t t t t )   ;Added substrate ports 

  ( SC_Chip      drawing      SC_Chip          t t t t t )   ;Added substrate ports 

  ( tight        drawing      tight            t t t t nil ) 

  ( analog       drawing      analog           t t t t nil ) 

Figure B.2.1 Code to define the three new added layers (highlighted in bold). 

It has to be noted that the layer number ‘Layer#’ should not be the same as 

for any already used layer. In this case, one may use 91, 92, and 93. 

These layers are now defined in the new technology file, however, they 

need some patterns and colors to be recognizable if they are displayed. In order to 

give them some patterns and colors, some changes in the file ‘display.drf’ have to 

be made. First, the display.drf file in the folder ‘cmosp35’ has to be copied into the 

startup directory. 
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Figure B.2.2 The files currently in the startup directory. 

drDefinePacket( 

;(DisplayName   PacketName   Stipple   LineStyle   Fill   Outline  ) 

. 

 . 

 . 

( display pplus backslash solid gray slate  ) 

( display SC_Inj contp  solid cyan cyan   ) ;Added substrate ports 

( display SC_Sen contp  solid green green  ) ;Added substrate ports 

( display SC_Chip contp  solid purple purple ) ;Added substrate ports 

) 

drDefineColor( 

;( DisplayName   ColorsName   Red      Green    Blue     ) 

 ( psc           white        255      255      255      ) 

 ( psc           silver       217      230      255      ) 

 ( psc           cream        255      255      204      ) 

 

Figure B.2.3 Code (highlighted in bold) added to the ‘display.drf’ file (remark: we 
can define any color and pattern as we wish, e.g. cyan/dotted for injector, 
purple/dotted for sensor, etc.). 
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B.3 Loading the Newly Created Technology File 

In order to use the modified technology file ‘cmosp35_SC.tf’ that includes 

the Silencer! layers for a new layout, it has to be loaded first. Once the CADENCE 

DFII environment is started up, a new library, e.g., ‘SC_Tool’ with the new 

technology file can be created. 

 

 

Figure B.3.1 Loading a technology file (CIW-window, Technology File / New…). 

If a new layout cell view is created in the ‘Library Manager’, the new layers 

used for Silencer! appear in the LSW window. 
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Figure B.3.2 New layers in the LSW window. 

In the ‘Display Resource Editor’, one can easily change the properties for the new 

created layers. For instance, the pattern of the injector/sensor layers can be changed 

by selecting the menu item ‘Edit / Display Resource Editor…’ in the LSW window.  

 

 

Figure B.3.3 The ‘Display Resource Editor’ window. 
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Figure B.3.4 The ‘Stripple Editor’ window. The changes, e.g., writing the pattern 
‘Sen’, have to be saved in the ‘display.drf’ file in the startup directory, otherwise 
they will get lost! 
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B.4 The ‘Silencer.ini’ File 

 The file ‘Silencer.ini’ has to be set up for any new technology to define the 

substrate ports in that technology. Substrate ports are locations in the layout where 

substrate noise gets injected or picked up. For example, two important substrate 

ports in the TSMC 0.35µm heavily doped process for low frequencies are p-plus 

diffusion regions (p-taps) and the NMOS junction capacitances. However, 

depending on the layout, more substrate ports may have to be included, such as n-

plus diffusion regions inside n-wells, fluctuating interconnects in large digital 

circuits, etc. 

 
;-------------------------------------------------------------------- 

; Setup file for substrate coupling analysis tool version 1.2  

;--------------------------------------------------------------------  

 

;-------------------------------------------------------------------- 

; Substrate port definitions (all different port types are listed 

; here. Remark: The FIRST line defines the p-substrate-taps ) 

; portName (max. 8 characters) layer1 OVERLAPS layer2 OUTSIDE layer3 

;-------------------------------------------------------------------- 

ports= 

 ptap_  active  pplus  nwell 

 nblk_  active  nplus  nwell 

end 

;-------------------------------------------------------------------- 

; All layers that need to be merged before a substrate port is de- 

; fined must be listed here, e.g. p-cells or user defined subcells 

;-------------------------------------------------------------------- 

cellsLayMerge= 

 active 

 nplus 

 pplus 

end 

Figure B.4.1 The file ‘Silencer.ini’ for the for the TSMC 0.35µm process. 
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The p-taps in that process are used to ground the substrate. However, due to 

the non-ideal ground (resistive metal traces, package line inductances), the voltage 

potential at these p-taps is bouncing, which causes noise coupling into the 

substrate. P-taps have to be defined in the ‘Silencer.ini’ file as the first substrate 

port between the key-words ‘ports=’ and ‘end’3. P-taps for the TSMC 0.35µm 

heavily doped process are locations where an ‘active’ layers and a ‘pplus’ layers 

overlap, but are not located inside an n-well. If Silencer! locates such ports, it will 

label them with ‘ptap_’ (unless a label is already inside the port bounding box). The 

name can be defined by the user, but should not exceed eight characters. 

Similarly to the p-taps, the ports to the NMOS junction capacitances can be 

defined. Substrate noise can get picked up through these capacitances (change in 

the transistor threshold voltage). Furthermore, switching circuits will inject 

substrate noise due to charge and discharge of the junction capacitances. These 

ports are recognized in the TSMC 0.35µm process as ‘active’ layers overlapping 

with an ‘nplus’ layers, but not located inside an n-well. 

As another example, if there was a substrate port underneath each gate 

region of an NMOS transistor, the following line could be added to the Silencer.ini 

file: 

 
ports= 

. 

. 

. 
nblk_  active  poly1  nwell 

end 

                                                
3 Silencer! assumes that the first line in the ‘Silencer.ini’ file defines the p-taps. It adds them in a list 

that can be used to define the interconnect routing late on, after the substrate ports have been 

located. 
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Figure B.4.2 An NMOS transistor with four fingers for which Silencer! recognized 
four substrate ports underneath the gate regions. 

The layers in the ‘Silencer.ini’ file between the key-words 

‘cellsLayMerge=’ and ‘end’ define all the layers that will be merged before 

Silencer! locates the substrate ports. Depending on the layout, transistor and taps 

may be defined as parameterized cells (p-cells) and consist of not only one layer, 

but several small pieces of layers touching each other. In such a case, Silencer! 

would recognize each piece as an individual substrate port, which is incorrect and 

would at least for some substrate network extractors cause an inaccurate result. For 

that reason, layers that are defined as substrate ports, may be listed (for the TSMC 

0.35µm process these layers would be ‘active’,  ‘nplus’, and ‘pplus’) in the file to 

be merged before any ports will be located. 
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APPENDIX C - Example for Macro-Model1 Implementation 

The following example shows how macro-model1 was implemented into 

Silencer! for n=3 contacts c1, c2, and c3: 

 

 

Figure C.1 Macro-model1 implementation example for three contacts. 

The coordinates of c1, c2, and c3 (rows) are defined as left, right, top, 

bottom (columns) in the following matrix: 

 

coord =  1e-6 * 

1 2 4 2 

            3 5 2 1 

            4 6 6 3 

0 6�m 

6�m 

5y23 

5x23 

C3 

C2 

C1 

d23 
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From the coordinates, Side lengths x / y and center points x / y of c1, c2, 

and c3 (rows) are: 

 

cont_size =  1e-6 * 

1 2 

2 1 

2 3 

 

cont_center = 1e-6 * 

1.5000  3.0000 

4.0000  1.5000 

5.0000  4.5000 

 

The distances between the contact center points can be calculated (using 

Pythagoras) and saved in a n x n matrix: 

 

( )
( )

2 2

xij cxj cxi

yij cyj cyi

dij xij yij

∆ = −

∆ = −

= ∆ + ∆

 

 

For this example, the distance matrix has the following entries (center point 

to center point): 

 

cont_dist = 1e-6 * 

0.0000  2.9155  3.8079 

2.9155  0.0000  3.1623 

3.8079  3.1623  0.0000 
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Before calculating the merged perimeter of two contacts, the following 

matrix for the contact orientation is needed: 

 

cont_orit = 1e-6 * 

0 1 2 

1 0 1 

2 1 0 

 

This matrix has been filled according to the following rules: If the side y of 

contact ci is smaller than the side y of contact cj, then cont_orit(ij) is the side y of 

ci, otherwise it is the side y of cj. In other words, the smaller side y of the two 

contacts ci and cj will be stored in the matrix. The diagonals will be zero. 

 

The area of two merged contacts can be calculated simply by adding the 

areas of two contacts ci and cj. The diagonal of the matrix contains the area of the 

contact itself. 

 

merged_area =  1.0e-011 * 

0.2000  0.4000  0.8000 

0.4000  0.2000  0.8000 

0.8000  0.8000  0.6000 

 

The merged perimeter for each contact c1, c2, and c3 (rows) needs to be 

calculated next. Using the equation 

 

_ ( ) ( ) ( ) _ ( )merged peri ij perimeter ci perimeter cj cont orit ij= + − , 

 

this matrix will be: 
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merged_peri = 1e-6 * 

   6 10 12 

10 6 14 

12 14 10 

 

This calculation may seem a bit confusing, but it is not. The way the 

perimeters of two contacts are merged is quite simple: First, the sum of the 

perimeters of both contacts is calculated, and then the shortest side y of either 

contact ci or cj will be subtracted twice. The diagonal contains perimeter of the 

contact itself. 

Before the z-parameters can be determined, a matrix for the alpha-

parameters has to be calculated using the equation: 

 

1
_ ( )

1 _ ( ) 2 _ ( ) 3
a par ij

a merged area ij a merged peri ij a
=

⋅ + ⋅ +
 

 

a_par=  1.0e+003 * 

0.0000  2.0423  1.6732 

0.0000  0.0000  1.4432 

0.0000  0.0000  0.0000 

 

 These parameters are used to calculate the z-parameters zii and zij using the 

following equations: 

 

_ ( )

1
1 _ ( ) 2 _ ( ) 3

_ ( ) b cont dist ij

zii
a merged area ii a merged peri ii a

zij a par ij e− ⋅

=
⋅ + ⋅ +

= ⋅
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z_par = 1.0e+003 * 

3.4154  1.5258  1.1434 

1.5258  3.4154  1.0520 

1.1434  1.0520  2.0160 

 

The y-parameter matrix can be calculated by inverting the z-parameter 

matrix: 

 

y_par = 1.0e-003 * 

0.4056  -0.1315 -0.1614 

-0.1315 0.3915  -0.1297 

-0.1614 -0.1297 0.6553 

 

Finally, using the y-parameter matrix, the resistor matrix can be calculated 

the following way: 

 

1
1 2 ...
1

rii
yi yi yin

rij
yij

=
+ + +

= −
 

 

r_matrix = 1.0e+003 * 

8.8742  7.6064  6.1955 

7.6064  7.6749  7.7090 

6.1955  7.7090  2.7463 
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APPENDIX D - Including a New Menu Item into CADENCE 

To include a menu item into the CADENCE Virtuoso™ layout editor, the 

process has to be set up first (create a new project directory). First, a new folder 

‘menus’ has to be created in that project directory. 

 

 

Figure D.1 The SC_tool project directory and the folder created folder ‘menus’. 

Second, the file ‘layEdit.menu’ has to be copied into the folder ‘menus’. If a 

folder ‘menus’ is present anytime CADENCE gets started, this file will be 

executed. Depending on the CADENCE version and setup, this file is available in a 

specific CADENCE directory. For the current setup at Oregon State University, the 

path would be: 

 

/nfs/guile/a1/sunapps/cadence/IC446/tools.sun4v/dfII/etc/tools/menus 
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Figure D.2 The file ‘layEdit.menu’ copied into the folder ‘menus’. 

Finally, changes in the file ‘layEdit.menu’ have to be made in order to 

define any new menu items. Menus for the layout editor can very conveniently be 

customized. Specifically, new menu items, menu texts and callback functions can 

be defined, modified, and hierarchically organized without having to rebuild the 

executable or SKILL context in order to see the change. 

D.1 Changing the Text of a Pulldown Menu Item 

For example, the text of the pulldown menu item ‘Save’ can be changed by 

replacing the ‘Save’ with ‘Hello Menu’: 

 
lecDesignSaveItem =  '(SaveItem  
                      "Save"   
                       "geSave()") 

lecDesignSaveItem =  '(SaveItem  
                      "Hello Menu"  
                       "geSave()") 

D.2 Callback Function of a Pulldown Menu Item 

The callback function of a pulldown menu item is usually a SKILL 

function. For the ‘Save’ item, the SKILL function ‘geSave()’ will be called after 

the user has selected the ‘Save’ item (e.g. per mouse click). Further, the SKILL 
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function can be user defined. Thus, the user can customize what happens off a 

menu item. 

D.3 Adding a New Menu Item to an Existing Pulldown Menu 

In order to implement a new menu item, the following code needs to be 

added in the file ‘layEdit.menu’: 
 
lecMenuTypeItem = '(itemSymbol  

"itemText"  
"callback()") 

 

‘lecMenuTypeItem’ consists of ‘itemSymbol’, ‘itemText’, and ‘callback()’ 

function. The ‘itemSymbol’ is the symbol (a symbol in SKILL is like a variable) to 

use when creating the menu item. The ‘itemText’ is the text to appear in the menu 

and ‘callback()’ is the string containing the callback function invoked when the 

user selects the menu item. 

 

 

Figure D.3 adding the menu items ‘Start Analysis…’ and ‘Options…’ to the menu 
‘Verify’. 
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For example, in order to add the menu items ‘Start Analysis…’ and 

‘Options…’ to the menu ‘Verify’ - illustrated in the figure above - the following 

code needs to be added: 

 
lecVerifyCouplingItem = '(VerifyCouplingItem 

"Start Analysis..." 
"printf(\"Start Substrate Coupling callback 
function\n\")")   

 
lecVerifyCouplingOptionsItem = '(VerifyCouplingOptionsItem 

"Options..." 
"printf(\"Menu for Substrate Coupling 
OPTIONS\n\")")  

 

The items ‘Start Analysis…’ and ‘Options…’ are defined as a pulldown list. 

Such a list can be defined by adding the following code: 

 
pulldownList = '(symbol "name" ( 

item 
item 

  ... 
      )) 

 

The variable ‘symbol’ defines the pulldown list and ‘name’ is the title of the 

pulldown list. An ‘item’ can be another pulldown list, a slider item, etc. In the 

example, ‘item’ is the slider item ‘OSU Substrate Noise Coupling…’ used to select 

‘Start Analysis…’ and ‘Options…’. The code for the slider item is: 

 
lecVerifyCouplingSliderItem = '(CouplingSliderItem "OSU Substrate Noise 
Coupling..." ( 
    lecVerifyCouplingItem 
    lecVerifyCouplingOptionsItem 
)) 

 

The ‘pulldownList’ for the ‘Verify’ menu with all listed items in the order 

as required looks like the following: 

 
lecVerifyMenu = '(leVerifyMenu "Verify" ( 
    lecVerifyDRCItem 
    lecVerifyExtractItem 
    lecVerifyCouplingSliderItem 
    lecVerifyConcICeItem 
    lecVerifyERCItem 
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    lecVerifyLVSItem 
    lecVerifyShortsItem  
    lecVerifyProbeItem 
    lecVerifyMarkersSliderItem 
)) 

 

Further, the ‘pulldownList’ for the slider item can now be implemented the 

following way: 
 
lecLayoutOnlyVerifyMenu = '(leLayoutOnlyVerifyMenu "Verify" ( 
    lecVerifyCouplingSliderItem 
    lecVerifyDRCItem 
    lecVerifyMarkersSliderItem 
)) 

 

All the changes made in the file layEdit.menu for that example are listed 

below and marked in bold: 

 
;****************************************************************************** 
; layEdit.menus - Copyright (C) 1997 Cadence Design Systems, Inc. 
;   All Rights Reserved. 
; 
 . 
 . 
 . 
;****************************************************************************** 
; Design Menu Items 
;****************************************************************************** 
 
lecDesignSaveItem = '(SaveItem  
                     "Save"   
                     "geSave()") 
 . 
 . 
 . 
;******************************************************************************* 
; Common Verify Menu Items 
;******************************************************************************* 
 
lecVerifyDRCItem = '(DRCItem 
                   "DRC..." 
                   "ivHiDRC()") 
 
lecVerifyExtractItem = '(ExtractItem 
                        "Extract..." 
                        "ivHiExtract()") 
   
lecVerifyCouplingItem = '(VerifyCouplingItem 
                        "Start Analysis..." 
                        "printf(\"Start Substrate Coupling callback function\n\")") 
  
 
lecVerifyCouplingOptionsItem = '(VerifyCouplingOptionsItem 
                        "Options..." 
                        "printf(\"Menu for Substrate Coupling OPTIONS will be implemented 
here\n\")")  
  
lecVerifyCouplingSliderItem = '(CouplingSliderItem "OSU Substrate Noise Coupling..." ( 
    lecVerifyCouplingItem 
    lecVerifyCouplingOptionsItem 
)) 
 
lecVerifyConcICeItem = '(ConcICeItem 
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                        "ConcICe..." 
                        "ivHiConcICe()") 

. 

. 

. 
;****************************************************************************** 
; Define the rest of the pulldowns for layout windows. 
;****************************************************************************** 
 
lecVerifyMenu = '(leVerifyMenu "Verify" ( 
    lecVerifyDRCItem 
    lecVerifyExtractItem 
    lecVerifyCouplingSliderItem 
    lecVerifyConcICeItem 
    lecVerifyERCItem 
    lecVerifyLVSItem 
    lecVerifyShortsItem  
    lecVerifyProbeItem 
    lecVerifyMarkersSliderItem 
)) 
 
lecLayoutOnlyVerifyMenu = '(leLayoutOnlyVerifyMenu "Verify" ( 
    lecVerifyCouplingSliderItem 
    lecVerifyDRCItem 
    lecVerifyMarkersSliderItem 
)) 
 . 
 . 
 . 
;****************************************************************************** 
; Define list of all pulldowns, used to get them built by ciw code. 
;****************************************************************************** 
 
lecAllPulldownMenus = '( 
    lecDesignMenuR  
    lecDesignMenuW 
    lecDesignMenuV 
    lecWindowMenu 
    lecCreateMenu 
    lecEditMenu 
    lecLayoutOnlyVerifyMenu 
    lecVerifyMenu 
    lecMiscMenu 
    lecMiscMenuV 
    lecUwCreateMenu 
    lecConnMenu 
    lecOptionsMenu 
    lecRouteMenu 
    lecHelpMenu 
) 
 . 
 . 
 . 

 


